Computational Mechanics

, Volume 57, Issue 4, pp 637–651 | Cite as

Integration of PGD-virtual charts into an engineering design process

  • Amaury Courard
  • David NéronEmail author
  • Pierre Ladevèze
  • Ludovic Ballere
Original Paper


This article deals with the efficient construction of approximations of fields and quantities of interest used in geometric optimisation of complex shapes that can be encountered in engineering structures. The strategy, which is developed herein, is based on the construction of virtual charts that allow, once computed offline, to optimise the structure for a negligible online CPU cost. These virtual charts can be used as a powerful numerical decision support tool during the design of industrial structures. They are built using the proper generalized decomposition (PGD) that offers a very convenient framework to solve parametrised problems. In this paper, particular attention has been paid to the integration of the procedure into a genuine engineering design process. In particular, a dedicated methodology is proposed to interface the PGD approach with commercial software.


Model reduction PGD Geometric parameters Virtual chart Shape optimisation 



This work was carried out in collaboration with Alain Bergerot from AIRBUS Defence & Space. We would like to thank SAMTECH (SIEMENS Company) for their help and availability so as to interface the method developed with SAMCEF.


  1. 1.
    Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time monitoring of thermal processes by reduced-order modeling. Int J Numer Methods Eng 102(5):991–1017MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alfaro I, González D, Bordeu F, Leygue A, Ammar A, Cueto E, Chinesta F (2014) Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices. J Comput Surg 1(1):1CrossRefGoogle Scholar
  3. 3.
    Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Parametric solutions involving geometry: a step towards efficient shape optimization. Comput Methods Appl Mech Eng 268:178–193MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: Transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121CrossRefzbMATHGoogle Scholar
  5. 5.
    Ammar A, Zghal A, Morel F, Chinesta F (2015) On the space-time separated representation of integral linear viscoelastic models. Comptes Rendus de Mécanique 343(4):247–263CrossRefGoogle Scholar
  6. 6.
    Barrault MYM, Nguyen N, Patera A (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l’Académie des Sciences Paris 339:667–672MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bernoulli C (1836) Vademecum des Mechanikers. J. G. Cotta, Stuttgart und TübingenzbMATHGoogle Scholar
  8. 8.
    Bognet B, Leygue A, Chinesta F, Bordeu F (2012) Parametric shape and material simulations for optimized parts design. In: ASME 2012 11th biennial conference on engineering systems design and analysis, American Society of Mechanical Engineers, pp 217–218Google Scholar
  9. 9.
    Chinesta F, Keunings R, Leygue A (2014) The Proper generalized decomposition for advanced numerical simulations: a Primer., SpringerBriefs in Applied Sciences and TechnologySpringer, ChamCrossRefzbMATHGoogle Scholar
  10. 10.
    Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404CrossRefGoogle Scholar
  11. 11.
    Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1):31–59MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cremonesi M, Néron D, Guidault PA, Ladevèze P (2013) A PGD-based homogenization technique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng 267:275–292MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283(1):210–223CrossRefGoogle Scholar
  15. 15.
    Gunzburger M, Peterson J, Shadid J (2007) Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ladevèze P (1999) Nonlinear computationnal structural mechanics—new approaches and non-incremental methods of calculation. Springer, New YorkzbMATHGoogle Scholar
  17. 17.
    Ladevèze P (2013) The Virtual chart concept in computational structural mechanics (plenary lecture). In: COMPLAS XII, 3–5 Sept 2013, Barcelona (Spain)Google Scholar
  18. 18.
    Ladevèze P (2014) PGD in linear and nonlinear Computational Solid Mechanics. In: Separated Representations and PGD-Based Model Reduction, Springer, pp 91–152Google Scholar
  19. 19.
    Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43):5730–5742CrossRefzbMATHGoogle Scholar
  20. 20.
    Maday Y, Ronquist E (2004) The reduced-basis element method: application to a thermal fin problem. J Sci Comput 26(1):240–258MathSciNetzbMATHGoogle Scholar
  21. 21.
    Manzoni A, Quarteroni A, Rozza G (2012) Model reduction techniques for fast blood flow simulation in parametrized geometries. Int J Numer Methods Biomed Eng 28(6–7):604–625MathSciNetCrossRefGoogle Scholar
  22. 22.
    Néron D, Ben Dhia H, Cottereau R (2015) A decoupled strategy to solve reduced-order multimodel problems in the PGD and Arlequin frameworks. Comput Mech. doi: 10.1007/s00466-015-1236-0
  23. 23.
    Néron D, Boucard PA, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275–292Google Scholar
  24. 24.
    Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupled physics. Int J Numer Methods Eng 73(6):783–804Google Scholar
  25. 25.
    Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23):1603–1626MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Patera AT, Rozza G (2006) Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0. Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.
  28. 28.
    Raghavan B, Breitkopf P, Tourbier Y, Villon P (2013) Towards a space reduction approach for efficient structural shape optimization. Struct Multidiscip Optim 48(5):987–1000CrossRefGoogle Scholar
  29. 29.
    Relun N, Néron D, Boucard PA (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51(1):83–92MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rozza G, Veroy K (2007) On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput Methods Appl Mech Eng 196(7):1244–1260MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ryckelynck DFC, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zlotnik S, Díez P, Modesto D, Huerta A (2015) Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. Int J Numer Methods Eng 103(10):737–758MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Amaury Courard
    • 1
  • David Néron
    • 2
    Email author
  • Pierre Ladevèze
    • 2
  • Ludovic Ballere
    • 1
  1. 1.AIRBUS Defence & SpaceSaint-Médard-en-Jalles CedexFrance
  2. 2.LMT, ENS Cachan, CNRSUniversité Paris-SaclayCachan CedexFrance

Personalised recommendations