Computational Mechanics

, Volume 57, Issue 4, pp 509–521 | Cite as

A decoupled strategy to solve reduced-order multimodel problems in the PGD and Arlequin frameworks

  • David Néron
  • Hachmi Ben Dhia
  • Régis Cottereau
Original Paper


In this paper, we investigate the coupling of reduced models for the simulation of structures involving localized geometrical details. Herein, we use the Arlequin method, originally designed to deal with multimodel and multiscale analyses of mechanical problems, to mix reduced models built using the proper generalized decomposition. Instead of solving the global coupled problem in a monolithic way, the LATIN strategy is used to propose a decoupled algorithm. The numerical examples demonstrate the feasibility of the approach and in particular its potentiality in terms of flexibility.


Reduced-order modeling PGD Multimodel Multiscale Arlequin LATIN 



The authors want to thank the French National Centre for Scientific Research (CNRS) and the French National Research Agency (projet number ANR-14-CE07-0007 CouESt) for the fundings provided to this work. The numerical simulations were performed using the routines CArl, freely available at


  1. 1.
    Maday Y, Ronquist E (2004) The reduced-basis element method: application to a thermal fin problem. J Sci Comput 26(1):240–258MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barrault M, Maday Y, Nguyen N, Patera A (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C R Acad Sci Paris 339:667–672MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43):5730–5742CrossRefzbMATHGoogle Scholar
  4. 4.
    Gunzburger M, Peterson J, Shadid J (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Patera AT, Rozza G (2006) Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, MITGoogle Scholar
  6. 6.
    Rozza G, Veroy K (2007) On the stability of the reduced basis method for Stokes equations in parametrized domains. Computat Methods Appl Mech Eng 196(7):1244–1260MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ladevèze P (1999) Nonlinear computational structural mechanics-new approaches and non-incremental methods of calculation. Springer Verlag, New YorkCrossRefzbMATHGoogle Scholar
  8. 8.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121CrossRefzbMATHGoogle Scholar
  9. 9.
    Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404CrossRefGoogle Scholar
  10. 10.
    Relun N, Néron D, Boucard P-A (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51(1):83–92MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cremonesi M, Néron D, Guidault P-A, Ladevèze P (2013) A PGD-based homogenization technique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng 267:275–292MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Néron D, Boucard P-A, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275–292MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chinesta F, Keunings R, Leygue A (2014) The proper generalized decomposition for advanced numerical simulations: a primer. Springer, SpringerBriefs in Applied Sciences and Technology, ChamCrossRefzbMATHGoogle Scholar
  14. 14.
    González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283(1):210–223CrossRefGoogle Scholar
  15. 15.
    Alfaro I, González D, Bordeu F, Leygue A, Ammar A, Cueto E, Chinesta F (2014) Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices. J Comput Surg 1(1):1CrossRefGoogle Scholar
  16. 16.
    Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time monitoring of thermal processes by reduced-order modeling. Int J Numer Methods Eng 102(5):991–1017MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ammar A, Zghal A, Morel F, Chinesta F (2015) On the space-time separated representation of integral linear viscoelastic models. C R Méc 343(4):247–263CrossRefGoogle Scholar
  18. 18.
    Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupled physics. Int J Numer Methods Eng 73(6):783–804MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Néron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time-space interface coupling. Int J Numer Methods Eng 75(9):1053–1084MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method (inFrench). C R l’Acad Sci 326:899–904zbMATHGoogle Scholar
  21. 21.
    Ben H, Dhia G, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62:1442–1462CrossRefzbMATHGoogle Scholar
  22. 22.
    Ben Dhia H (1998) Further insights by theoretical investigations of the multiscale arlequin method. Int J Multiscale Comput Eng 6(3):215–232CrossRefGoogle Scholar
  23. 23.
    Cottereau R, Clouteau D, Ben Dhia H, Zaccardi C (2011) A stochasticdeterministic coupling method for continuum mechanics. Comput Methods Appl Mech Eng 200(47–48):3280–3288MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nazeer S, Bordeu F, Leygue A, Chinesta F (2014) Arlequin based PGD domain decomposition. Comput Mech 54(5):1175–1190MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ben H, Dhia N, Elkhodja F-X (2008) Roux, multimodeling of multi-alterated structures in the arlequin framework. solution with a domain-decomposition solver. Eur J Comput Mech 17:969–980zbMATHGoogle Scholar
  26. 26.
    Ladevèze P, Passieux J-C, Néron D (2010) The LATIN multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199:1287–1296MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Allix O, Gosselet P, Kerfriden P, Saavedra K (2012) Virtual delamination testing through non-linear multi-scale computational methods: some recent progress, CMC: computers. Mater Contin 32(2):107–132Google Scholar
  29. 29.
    Ben Dhia H, Rateau G (2002) Application of the arlequin method to some structures with defects. Eur J Comput Mech 11(2–3–4):291–304Google Scholar
  30. 30.
    Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23–24):1603–1626MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Heyberger C, Boucard P-A, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49(3):277–289CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David Néron
    • 1
  • Hachmi Ben Dhia
    • 2
  • Régis Cottereau
    • 2
  1. 1.LMT-Cachan (ENS Cachan/CNRS/Université Paris-Saclay)Cachan CedexFrance
  2. 2.MSSMat (CentraleSupélec/CNRS/Université Paris-Saclay)Châtenay-Malabry CedexFrance

Personalised recommendations