Computational Mechanics

, Volume 57, Issue 1, pp 105–122 | Cite as

A selective enhanced FE-method for phase field modeling of ferroelectric materials

Original Paper


Ferroelectric materials are characterized by electrical di-poles, forming domains of uniform polarization orientation. In phase field models diffuse interfaces separate polarization domains as domain walls. Finite elements describe such interfaces with continuous field variables. But high gradients appear in the field variable requiring corresponding interpolations in the vicinity of domain walls. Otherwise, moving interfaces between phases stick to artificial minimum energy states, known as mesh-pinning. For this purpose, we study a selective enhancement of standard finite elements to avoid mesh-pinning effects. Our method enhances the ansatz space locally without impact on the physical theory or the overall finite element formulation.


Phase field modeling Phase transition Enhanced finite element method Ferroelectric materials 


  1. 1.
    Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRefGoogle Scholar
  2. 2.
    Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Comput Coupling Ph Diagr Thermochem 32:268–294CrossRefGoogle Scholar
  3. 3.
    Wang J, Shi S-Q, Chen L-Q, Li Y, Zhang T-Y (2004) Phase field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 52:749–764CrossRefGoogle Scholar
  4. 4.
    Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J Mesh Phys Solids 55:280–305MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Schrade D, Müller R, Xu BX, Gross D (2007) Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput Methods Appl Mech Eng 196:4365–4374CrossRefMATHGoogle Scholar
  6. 6.
    Wang J, Kamlah M (2008) Domain control in ferroelectric nanodots through surface charges. Appl Phys Lett 93:262904-1–262904-3Google Scholar
  7. 7.
    Hlinka J, Marton P (2006) Phenomenological model of a \(90^{\circ }\) domain wall in \(\text{ BaTiO }_{3}\)-type ferroelectrics. Phys Rev B 74:104104-1–104104-12CrossRefGoogle Scholar
  8. 8.
    Krauß M, Münch I, Landis CM, Wagner W (2011) Phase-field simulation and design of a ferroelectric nano-generator. Proc SPIE 7978:797821. doi:10.1117/12.880493 CrossRefGoogle Scholar
  9. 9.
    Münch I, Krauß M, Wagner W, Kamlah M (2012) Ferroelectric nanogenerators coupled to an electric circuit for energy harvesting. Smart Mater Struct 21:115026-1–115026-8CrossRefGoogle Scholar
  10. 10.
    Provatas N, Goldenfeld N, Dantzig JA (1998) Efficient computation of dentric microstructures using adaptive mesh refinement. Phys Rev Lett 80(15):3308–3311CrossRefGoogle Scholar
  11. 11.
    Jeong J-H, Goldenfeld N, Dantzig JA (2001) Phase field model for three-dimensional dentrite growth with fluid flow. Phys Rev E 64:041602-1–041602-14CrossRefGoogle Scholar
  12. 12.
    Welschinger F, Hofacker M, Miehe C (2010) Configurational-force-based adaptive solver for a phase field model of fracture. Proc Appl Math Mech 10:689–692CrossRefGoogle Scholar
  13. 13.
    Kuhn C, Müller R (2011) A new finite element technique for a phase field model of brittle fracture. J Theor Appl Mech 49(4):1115–1133Google Scholar
  14. 14.
    Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219CrossRefMATHGoogle Scholar
  15. 15.
    Wachspress EL (1978) Incompatible quadrilateral basis functions. Int J Numer Methods Eng 12:589–595CrossRefMATHGoogle Scholar
  16. 16.
    Wilson EL, Ibrahimbegovic A (1990) Use of incompatible displacement modes for the calculation of element stiffnesses or stresses. Finite Elem Anal Des 7:229–241CrossRefGoogle Scholar
  17. 17.
    Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695CrossRefMATHGoogle Scholar
  18. 18.
    Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Taylor RL, Zienkiewicz OC, Oñate E (1998) A hierarchical finite element method based on the partition of unity. Comput Appl Mech Eng 152:73–84CrossRefMATHGoogle Scholar
  20. 20.
    Münch I, Krauß M (2015) An enhanced finite element technique for diffuse phase transition. Int J Comput Mech 56:691–708. doi:10.1007/s00466-015-1195-5 CrossRefGoogle Scholar
  21. 21.
    Devonshire A (1954) Theory of ferroelectrics. Philipp Mag 3(10):85–130Google Scholar
  22. 22.
    Li Z, Chan SK, Grimsditch MH, Zouboulis ES (1991) The elastic and electromechanical properties of tetragonal \(\text{ BaTiO }_3\) single crystals. J Appl Phys 70:7327–7332CrossRefGoogle Scholar
  23. 23.
    Berlincourt D, Jaffe H (1958) Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev 111(1):143–148CrossRefGoogle Scholar
  24. 24.
    Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92:178–192MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Falk F (1983) Ginzburg–Landau theory of static domain walls in shape-memory alloys: Z. Phys B 51:177–185Google Scholar
  26. 26.
    Cao W, Cross LE (1991) Theory of twin structures in ferroelectric perowskites with a first-order phase transition. Phys Rev B 44(1):5–12CrossRefGoogle Scholar
  27. 27.
    Zienkiewicz OC, De JP, Gago SR, Kelly DW (1983) The hierarchical concept in finite element analysis. Comput Struct 161–4:53–65CrossRefGoogle Scholar
  28. 28.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for Structural AnalysisKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations