Computational Mechanics

, Volume 57, Issue 1, pp 75–103 | Cite as

A stabilized, symmetric Nitsche method for spatially localized plasticity

Original Paper

Abstract

A heterogeneous interface method is developed for combining primal displacement and mixed displacement-pressure formulations across nonconforming finite element meshes to treat volume-preserving plastic flow. When the zone of inelastic response is localized within a larger domain, significant computational savings can be achieved by confining the mixed formulation solely to the localized region. The method’s distinguishing feature is that the coupling terms for joining dissimilar element types are derived from a time-discrete free energy functional, which is based on a Lagrange multiplier formulation of the interface constraints. Incorporating residual-based stabilizing terms at the interface enables the condensation of the multiplier field, leading to a symmetric Nitsche formulation in which the interface operators respect the differing character of the governing equations in each region. In a series of numerical problems, the heterogeneous interface method achieved comparable results on coarser meshes as those obtained from applying the mixed formulation throughout the domain.

Keywords

J2-plasticity Nitsche method Discontinuous Galerkin Variational Multiscale method Mixed formulation 

References

  1. 1.
    Masud A, Scovazzi G (2011) A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations. Int J Numer Methods Fluids 65(1–3):28–42MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Simo JC, Hughes TJR (1998) Computational inelasticity, 7th edn. Springer, New YorkMATHGoogle Scholar
  3. 3.
    Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1–3):177–208MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cervera M, Chiumenti M, Valverde Q, de Saracibar CA (2003) Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput Methods Appl Mech Eng 192(49–50):5249–5263CrossRefMATHGoogle Scholar
  5. 5.
    Masud A, Xia K (2006) A variational multiscale method for inelasticity: application to superelasticity in shape memory alloys. Comput Methods Appl Mech Eng 195(33–36):4512–4531MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Le Tallec P, Sassi T (1995) Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math Comput 64(212):1367–1396CrossRefMATHGoogle Scholar
  7. 7.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite elelement methods, vol 15. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82(5):537–563MathSciNetMATHGoogle Scholar
  9. 9.
    Barbosa HJC, Hughes TJR (1991) The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition. Comput Methods Appl Mech Eng 85(1):109–128MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1):9–15MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39(5):1749–1779MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225:44–54MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90(1):40–64MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sanders JD, Laursen TA, Puso MA (2012) A Nitsche embedded mesh method. Comput Mech 49(2):243–257MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Djoko JK, Ebobisse F, McBride AT, Reddy BD (2007) A discontinuous Galerkin formulation for classical and gradient plasticity—Part 1: formulation and analysis. Comput Methods Appl Mech Eng 196(37–40):3881–3897MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Djoko JK, Ebobisse F, McBride AT, Reddy BD (2007) A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: algorithms and numerical analysis. Comput Methods Appl Mech Eng 197(1–4):1–21MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hansbo P (2010) A discontinuous finite element method for elasto-plasticity. Int J Numer Methods Biomed Eng 26(6):780–789MathSciNetMATHGoogle Scholar
  18. 18.
    Liu R, Wheeler MF, Dawson CN, Dean RH (2010) A fast convergent rate preserving discontinuous Galerkin framework for rate-independent plasticity problems. Comput Methods Appl Mech Eng 199(49):3213–3226MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Liu R, Wheeler MF, Yotov I (2013) On the spatial formulation of discontinuous Galerkin methods for finite elastoplasticity. Comput Methods Appl Mech Eng 253:219–236MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Noels L, Radovitzky R (2008) An explicit discontinuous Galerkin method for non-linear solid dynamics: formulation, parallel implementation and scalability properties. Int J Numer Methods Eng 74(9):1393–1420MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Truster TJ, Masud A (2014) Primal interface formulation for coupling multiple PDEs: a consistent derivation via the variational multiscale method. Comput Methods Appl Mech Eng 268:194–224MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hlepas G, Truster T, Masud A (2014) A heterogeneous modeling method for porous media flows. Int J Numer Methods Fluids 75(7):487–518MathSciNetCrossRefGoogle Scholar
  23. 23.
    Truster T, Chen P, Masud A (2015) On the algorithmic and implementational aspects of a discontinuous Galerkin method at finite strains. Comput Math Appl 70(6):1266–1289MathSciNetCrossRefGoogle Scholar
  24. 24.
    Truster TJ, Chen P, Masud A (2015) Finite strain primal interface formulation with consistently evolving stabilization. Int J Numer Methods Eng 102(3–4):278–315MathSciNetCrossRefGoogle Scholar
  25. 25.
    Masud A, Truster TJ (2013) A framework for residual-based stabilization of incompressible finite elasticity: stabilized formulations and methods for linear triangles and tetrahedra. Comput Methods Appl Mech Eng 267:359–399MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Masud A, Truster TJ, Bergman LA (2011) A variational multiscale a posteriori error estimation method for mixed form of nearly incompressible elasticity. Comput Methods Appl Mech Eng 200(47–48):3453–3481MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Masud A, Truster TJ, Bergman LA (2012) A unified formulation for interface coupling and frictional contact modeling with embedded error estimation. Int J Numer Methods Eng 92(2):141–177MathSciNetCrossRefGoogle Scholar
  28. 28.
    Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1–3):139–148MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kiran R, Khandelwal K (2014) Complex step derivative approximation for numerical evaluation of tangent moduli. Comput Struct 140:1–13CrossRefGoogle Scholar
  30. 30.
    Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134(3–4):223–240MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200(1–4):326–344MathSciNetCrossRefGoogle Scholar
  32. 32.
    Truster TJ, Masud A (2013) A Discontinuous/continuous Galerkin method for modeling of interphase damage in fibrous composite systems. Comput Mech 52(3):499–514MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Eyck AT, Celiker F, Lew A (2008) Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: analytical estimates. Comput Methods Appl Mech Eng 197(33–40):2989–3000MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127(1–4):387–401CrossRefMATHGoogle Scholar
  35. 35.
    Calderer R, Masud A (2012) Residual-based variational multiscale turbulence models for unstructured tetrahedral meshes. Comput Methods Appl Mec Eng 254:238–253MathSciNetCrossRefGoogle Scholar
  36. 36.
    Oden JT, Babuška I, Nobile F, Feng Y, Tempone R (2005) Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty. Comput Methods Appl Mech Eng 194(2–5):195–204CrossRefMATHGoogle Scholar
  37. 37.
    Oden JT, Prudhomme S, Romkes A, Bauman P (2006) MultiScale modeling of physical phenomena: adaptive control of models. SIAM J Sci Comput 28(6):2359–2389MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Prudhomme S, Chamoin L, Dhia HB, Bauman PT (2009) An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations. Comput Methods Appl Mech Eng 198(21–26):1887–1901CrossRefMATHGoogle Scholar
  39. 39.
    Lubliner J (1990) Plasticity theory. Macmillan Publishing Company, New YorkMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations