Computational Mechanics

, Volume 56, Issue 3, pp 463–475 | Cite as

Computing intersections between non-compatible curves and finite elements

  • Raul Durand
  • Márcio M. Farias
  • Dorival M. Pedroso
Original Paper

Abstract

This paper presents a method to find all intersections between curved lines such as structural line elements and finite element meshes with intentions to generate smaller, non-compatible, line cells (e.g. bar elements) between crossings. The intersection finding algorithm works for two and three-dimensional meshes constituted by linear, quadratic or higher order elements. Using the proposed algorithm, meshes can then be automatically prepared for finite element analyses with techniques for embedding elements within others or analyses that require lines within solids. The application of the method is demonstrated by a number of numerical examples illustrating its capabilities in handling complex geometries, relative speed and convenience.

Keywords

Finite element mesh Mesh intersection Curve elements Embedded technique 

Notes

Acknowledgments

The support of the Australian Research Council (ARC), under grant DE120100163, and the Brazilian Research Council (CNPq) are gratefully acknowledged.

References

  1. 1.
    Barzegar F, Maddipudi S (1994) Generating reinforcement in FE modeling of concrete structures. J Struct Eng 120(5):1656–1662. doi: 10.1061/(ASCE)0733-9445(1994)120:5(1656) CrossRefGoogle Scholar
  2. 2.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Nonlinear finite elements for continua and structures. Wiley, New YorkGoogle Scholar
  3. 3.
    CGAL P (2014) CGAL User and Reference Manual, 4.4 edn. CGAL Editorial Board. http://doc.cgal.org/4.4/Manual/packages.html
  4. 4.
    Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York. doi: 10.1002/9780470749081 CrossRefGoogle Scholar
  5. 5.
    Durand R (2008) Three-dimensional analysis of geotechnical structures subject to reinforcement and drainage. Ph.D. thesis, University of BrasiliaGoogle Scholar
  6. 6.
    Durand R, Farias M, Pedroso D (2015) Modelling the strengthening of solids with incompatible line finite elements. Comput Struct. Under reviewGoogle Scholar
  7. 7.
    Elwi A, Hrudey T (1989) Finite element model for curved embedded reinforcement. J Eng Mech 115(4):740–754. doi: 10.1061/(ASCE)0733-9399(1989)115:4(740) CrossRefGoogle Scholar
  8. 8.
    Farias MM, Naylor DJ (1998) Safety analysis using finite elements. Comput Geotech 22(2):165–181. doi: 10.1016/S0266-352X(98)00005-6 CrossRefGoogle Scholar
  9. 9.
    Hartl H (2002) Development of a continuum-mechanics-based tool for 3d finite element analysis of reinforced concrete structures and application to problems of soil-structure interaction. Ph.D. thesis, Graz University of Technology, Institute of Structural ConcreteGoogle Scholar
  10. 10.
    Hughes T (2000) The finite element method: linear static and dynamic finite element analysis. Dover civil and mechanical engineering series. Dover Publications, New YorkGoogle Scholar
  11. 11.
    Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. doi: 10.1016/j.cma.2004.10.008 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jendele L, Cervenka J (2006) Finite element modelling of reinforcement with bond. Comput Struct 84(28):1780–1791. doi: 10.1016/j.compstruc.2006.04.010 CrossRefGoogle Scholar
  13. 13.
    Markou G, Papadrakakis M (2013) Computationally efficient 3D finite element modeling of RC structures. Comput Concr 12(4):443–498. doi: 10.12989/cac.2013.12.4.443
  14. 14.
    Paraview D (2014) ParaView Data analysis and visualisation application. http://www.paraview.org
  15. 15.
    Phillips D, Zienkiewicz O (1976) Finite element non-linear analysis of concrete structures. ICE Proc 61(1):59–88. doi: 10.1680/iicep.1976.3503 CrossRefGoogle Scholar
  16. 16.
    Wriggers P (2008) Nonlinear finite element methods. Springer, New York. doi: 10.1007/978-3-540-71001-1 MATHGoogle Scholar
  17. 17.
    Zhou Y, Cheuk C, Tham L (2009) An embedded bond-slip model for finite element modelling of soil-nail interaction. Comput Geotech 36(6):1090–1097. doi: 10.1016/j.compgeo.2009.03.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of BrasiliaBrasiliaBrazil
  2. 2.School of Civil EngineeringThe University of QueenslandSt LuciaAustralia

Personalised recommendations