Advertisement

Computational Mechanics

, Volume 56, Issue 3, pp 443–461 | Cite as

Numerical modeling of shape memory alloy linear actuator

  • Jaronie Mohd Jani
  • Sunan Huang
  • Martin Leary
  • Aleksandar Subic
Original Paper

Abstract

The demand for shape memory alloy (SMA) actuators in high-technology applications is increasing; however, there exist technical challenges to the commercial application of SMA actuator technologies, especially associated with actuation duration. Excessive activation duration results in actuator damage due to overheating while excessive deactivation duration is not practical for high-frequency applications. Analytical and finite difference equation models were developed in this work to predict the activation and deactivation durations and associated SMA thermomechanical behavior under variable environmental and design conditions. Relevant factors, including latent heat effect, induced stress and material property variability are accommodated. An existing constitutive model was integrated into the proposed models to generate custom SMA stress–strain curves. Strong agreement was achieved between the proposed numerical models and experimental results; confirming their applicability for predicting the behavior of SMA actuators with variable thermomechanical conditions.

Keywords

Finite difference method Shape memory alloy Transient Optimization 

List of Symbols

A

Cross-sectional area \((\mathrm{m}^{2})\)

\(A_{sf}\)

Surface area \((\mathrm{m}^{2})\)

\(A_{s},\,A_{f}\)

Austenite transformation temperatures \((^{\circ }\mathrm{C})\)

\(M_{s},\,M_{f}\)

Martensite transformation temperatures \((^{\circ }\mathrm{C})\)

\({\theta }_{T}\)

Thermoelastic tensor \((\mathrm{N}/\mathrm{m}^{2}\,\mathrm{K})\)

\(\varOmega \)

Transformation tensor \([\mathrm{N}/\mathrm{m}^{2})\)

\(\alpha \)

Thermal diffusivity \((\mathrm{m}^{2}/\mathrm{s})\)

\(\upsilon \)

Kinematic viscosity \((\mathrm{m}^{2}/\mathrm{s})\)

\(q^{'}\)

Heat flux \((\mathrm{W}/\mathrm{m}^{2})\)

\(\xi _{M}\)

Martensite volume fraction (–)

1-D

One-dimensional

\(\varDelta H\)

Latent heat of phase transformation (J/kg)

c

Specific heat capacity (J/kg K)

\(C_{A},\,C_{M}\)

Stress-influenced coefficients \((\mathrm{MPa}/^{\circ }\mathrm{C})\)

D

Diameter (m)

F

Force (N)

\(\rho _{D}\)

Density \((\mathrm{kg}/\mathrm{m}^{3})\)

\(\varepsilon ^{'}\)

Emissivity (–)

\(\sigma ^{'}\)

Stephen–Boltzman constant \((\mathrm{W}/\mathrm{m}^{2}\,\mathrm{K}^{4})\)

\(\rho _{R}\)

Resistivity (\(\Omega \)m)

h

Heat transfer coefficient \((\mathrm{W}/\mathrm{m}^{2}\,\mathrm{K})\)

\(\sigma \)

Stress (Pa)

\(\varepsilon \)

Strain (–)

k

Thermal conductivity (W/m K)

Ġ

Rate of Joule heating per volume \((\mathrm{W}/\mathrm{m}^{3})\)

J

Current density \((\mathrm{A}/\mathrm{mm}^{2})\)

L

Length (m)

T

Temperature \((\mathrm{K},\,^{\circ }\mathrm{C})\)

U

Velocity (m/s)

t

Time (s)

r

Radius (m)

R

Electrical resistance (\(\Omega \))

S

Spring constant (N/m)

V

Volume \((\mathrm{m}^{3})\)

E

Young’s modulus \((\mathrm{N}/\mathrm{m}^{2})\)

Bi

Biot number (–)

\(F_{o}\)

Fourier number (–)

Nu

Nusselt number (–)

Pr

Prandtl number (–)

Re

Reynolds number (–)

References

  1. 1.
    Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113. doi: 10.1016/j.matdes.2013.11.084 CrossRefGoogle Scholar
  2. 2.
    Otsuka K, Wayman C (1998) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Lagoudas DC (2010) Shape memory alloys: modeling and engineering applications, 1st edn. Springer, New YorkGoogle Scholar
  4. 4.
    Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221:535–552CrossRefGoogle Scholar
  5. 5.
    Tadesse Y, Thayer N, Priya S (2010) Tailoring the response time of shape memory alloy wires through active cooling and pre-stress. J Intell Mater Syst Struct 21:19–40CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya A, Lagoudas DC, Wang Y, Kinra VK (1995) On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment. Smart Mater Struct 4:252CrossRefGoogle Scholar
  7. 7.
    Huang S, Leary M, Ataalla T, Probst K, Subic A (2012) Optimisation of Ni–Ti shape memory alloy response time by transient heat transfer analysis. Mater Des 35:655–663. doi: 10.1016/j.matdes.2011.09.043 CrossRefGoogle Scholar
  8. 8.
    Leary M, Schiavone F, Subic A (2010) Lagging for control of shape memory alloy actuator response time. Mater Des 31:2124–2128. doi: 10.1016/j.matdes.2009.10.010 CrossRefGoogle Scholar
  9. 9.
    Hunter IW, Hollerbach JM, Ballantyne J (1991) A comparative analysis of actuator technologies for robotics. Robot Rev 2:299–342Google Scholar
  10. 10.
    Liang C, Rogers C (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8:285–302CrossRefGoogle Scholar
  11. 11.
    Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRefGoogle Scholar
  12. 12.
    Mohd Jani J, Huang S, Leary M, Subic A (2015) Analysis of convective heat transfer coefficient on shape memory alloy actuator under various ambient temperatures with finite difference method. Appl Mech Mater 736:127–133. doi: 10.4028/www.scientific.net/AMM.736.127 CrossRefGoogle Scholar
  13. 13.
    Leary M, Huang S, Ataalla T, Baxter A, Subic A (2013) Design of shape memory alloy actuators for direct power by an automotive battery. Mater Des 43:460–466. doi: 10.1016/j.matdes.2012.07.002 CrossRefGoogle Scholar
  14. 14.
    Boyd JG, Lagoudas DC (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plast 12:805–842. doi: 10.1016/S0749-6419(96)00030-7 CrossRefzbMATHGoogle Scholar
  15. 15.
    Achenbach M (1989) A model for an alloy with shape memory. Int J Plast 5:371–395. doi: 10.1016/0749-6419(89)90023-5 CrossRefGoogle Scholar
  16. 16.
    Çengel YA, Ghajar AJ (2011) Heat and mass transfer: fundamentals & applications. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Majumdar P (2005) Computational methods for heat and mass transfer, 1st edn. Taylor and Francis, New YorkGoogle Scholar
  18. 18.
    Huang S, Jani JM, Leary M, Subic A (2013) The critical and crossover radii on transient heating. Appl Therm Eng 60:325–334. doi: 10.1016/j.applthermaleng.2013.06.052 CrossRefGoogle Scholar
  19. 19.
    Bonacina C, Comini G, Fasano A, Primicerio M (1973) Numerical solution of phase-change problems. Int J Heat Mass Transf 16:1825–1832. doi: 10.1016/0017-9310(73)90202-0 CrossRefGoogle Scholar
  20. 20.
    Neugebauer R, Bucht A, Pagel K, Jung J (2010) Numerical simulation of the activation behavior of thermal shape memory alloys. 76450J–76450J-12Google Scholar
  21. 21.
    Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4:229–242. doi: 10.1177/1045389x9300400213 CrossRefGoogle Scholar
  22. 22.
    Ahn KK, Kha NB (2008) Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic. Mechatronics 18:141–152. doi: 10.1016/j.mechatronics.2007.10.008 CrossRefGoogle Scholar
  23. 23.
    Kohl M (2010) Shape memory microactuators (microtechnology and MEMS), 1st edn. Springer, BerlinGoogle Scholar
  24. 24.
    Otsuka K, Wayman C (1999) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Walker J (2008) Fundamental of physics, 8th edn. Wiley, New YorkGoogle Scholar
  26. 26.
    Novák V, Šittner P, Dayananda GN, Braz-Fernandes FM, Mahesh KK (2008) Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: experiments and simulation. Mater Sci Eng A 481–482:127–133. doi: 10.1016/j.msea.2007.02.162 CrossRefGoogle Scholar
  27. 27.
    Lagoudas DC, Bo Z (1999) Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle. Int J Eng Sci 37:1141–1173. doi: 10.1016/S0020-7225(98)00114-1 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bekker A, Brinson LC (1998) Phase diagram based description of the hysteresis behavior of shape memory alloys. Acta Mater 46:3649–3665. doi: 10.1016/S1359-6454(97)00490-4 CrossRefGoogle Scholar
  29. 29.
    Brailovski V, Trochu F, Daigneault G (1996) Temporal characteristics of shape memory linear actuators and their application to circuit breakers. Mater Des 17:151–158. doi: 10.1016/S0261-3069(96)00049-0 CrossRefGoogle Scholar
  30. 30.
    Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech 18:251–263Google Scholar
  31. 31.
    Auricchio F, Lubliner J (1997) A uniaxial model for shape-memory alloys. Int J Solids Struct 34:3601–3618. doi: 10.1016/S0020-7683(96)00232-6 CrossRefzbMATHGoogle Scholar
  32. 32.
    De la Flor S, Urbina C, Ferrando F (2006) Constitutive model of shape memory alloys: theoretical formulation and experimental validation. Mater Sci Eng A 427:112–122. doi: 10.1016/j.msea.2006.04.008 CrossRefGoogle Scholar
  33. 33.
    Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. WileyGoogle Scholar
  34. 34.
    Carslaw H, Jaeger JJC (1959) Conduction of heat in solids. Oxford University Press, LondonGoogle Scholar
  35. 35.
    Eisakhani A, Ma W, Gao J, Culham JR, Gorbet R (2011) Natural convection heat transfer modelling of shape memory alloy wire. In: Smart materials, structures and NDT in aerospace. CANSMART CINDE IZFP, MontrealGoogle Scholar
  36. 36.
    Churchill SW, Chu HHS (1975) Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int J Heat Mass Transf 18:1049–1053. doi: 10.1016/0017-9310(75)90222-7 CrossRefGoogle Scholar
  37. 37.
    Churchill SW, Bernstein M (1977) A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J Heat Transf 99:300–306. doi: 10.1115/1.3450685 CrossRefGoogle Scholar
  38. 38.
    Van Der Hegge Zijnen BG (1956) Modified correlation formulae for the heat transfers by natural and by forced convection from horizontal cylinders. Appl Sci Res 6:129–140. doi: 10.1007/BF03185032 Google Scholar
  39. 39.
    Ozisik MN (1987) Basic heat transfer. R.E. Krieger Publishing Company, MalabarGoogle Scholar
  40. 40.
    Elahinia MH, Ahmadian M (2005) An enhanced SMA phenomenological model: II. The experimental study. Smart Mater Struct 14:1309CrossRefGoogle Scholar
  41. 41.
    Hoffman JD, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca RatonzbMATHGoogle Scholar
  42. 42.
    Iserles A (1996) A first course in the numerical analysis of differential equations. Cambridge University Press, CambridgeGoogle Scholar
  43. 43.
    Ozisik N (1994) Finite difference methods in heat transfer, 1st edn. CRC Press, Boca RatonGoogle Scholar
  44. 44.
    Smith GD (1985) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, OxfordzbMATHGoogle Scholar
  45. 45.
    Potapov PL, Da Silva EP (2000) Time response of shape memory alloy actuators. J Intell Mater Syst Struct 11:125–134. doi: 10.1106/xh1h-fh3q-1yex-4h3f CrossRefGoogle Scholar
  46. 46.
    Velázquez R, Pissaloux E (2012) Modelling and temperature control of shape memory alloys with fast electrical heating. Int J Mech Control 13:1–8Google Scholar
  47. 47.
    Incropera F, DeWitt D (1985) Introduction to heat transfer. Wiley, New YorkGoogle Scholar
  48. 48.
    Shahin AR, Meckl PH, Jones JD, Thrasher MA (1994) Enhanced cooling of shape memory alloy wires using semiconductor ‘heat pump’ modules. J Intell Mater Syst Struct 5:95–104CrossRefGoogle Scholar
  49. 49.
    Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math Proc Camb Philos Soc 43:50–67. doi: 10.1017/S0305004100023197 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Wang B, Han J, Sun Y (2012) A finite element/finite difference scheme for the non-classical heat conduction and associated thermal stresses. Finite Elem Anal Des 50:201–206MathSciNetCrossRefGoogle Scholar
  51. 51.
    Chun CK, Park SO (2000) A fixed-grid finite difference method for phase change problems. Numer Heat Transf B 38:59–73. doi: 10.1080/10407790050131561 CrossRefGoogle Scholar
  52. 52.
    Jaluria Y, Atluri S (1994) Computational heat transfer. Comput Mech 14:385–386. doi: 10.1007/BF00377593 CrossRefGoogle Scholar
  53. 53.
    Leary M, Mac J, Mazur M, Schiavone F, Subic A (2010) Enhanced shape memory alloy actuators. In: Sustainable automotive technologies 2010. Springer, Berlin, pp 183–190Google Scholar
  54. 54.
    Charney JG, Fjörtoft R, Von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus A 2:237–254MathSciNetCrossRefGoogle Scholar
  55. 55.
    Voller VR, Cross M, Markatos NC (1987) An enthalpy method for convection/diffusion phase change. Int J Numer Methods Eng 24:271–284. doi: 10.1002/nme.1620240119 CrossRefzbMATHGoogle Scholar
  56. 56.
    Dynalloy, Inc. (2007) In: Dynalloy, Inc. (ed) Technical characteristics of Flexinol actuator wires. Dynalloy, Inc., Costa MesaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jaronie Mohd Jani
    • 1
    • 2
  • Sunan Huang
    • 1
  • Martin Leary
    • 1
  • Aleksandar Subic
    • 3
  1. 1.Centre for Advanced Manufacture, School of Aerospace, Mechanical and Manufacturing EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Institute of Product Design and ManufacturingUniversiti Kuala LumpurKuala LumpurMalaysia
  3. 3.Swinburne ResearchSwinburne University of Technology, HawthornVictoriaAustralia

Personalised recommendations