Advertisement

Computational Mechanics

, Volume 56, Issue 1, pp 131–151 | Cite as

Nonlinear reduced order homogenization of materials including cohesive interfaces

  • Felix FritzenEmail author
  • Matthias Leuschner
Original Paper

Abstract

The mechanical response of composite materials is strongly influenced by the nonlinear behavior of the interface between the constituents. In order to make reliable yet computationally efficient predictions for such materials, a reduced order model is developed. Conceptual ideas of the NTFA (Michel and Suquet, Int J Solids Struct 40:6937–6955, 2003, Comput Methods Appl Mech Eng 193:5477–5502, 2004) and of the pRBMOR (Fritzen, Hodapp and Leuschner Comput Methods Appl Mech Eng 260:143–154, 2013, Fritzen et al., Comput Methods Appl Mech Eng 278:186–217, 2014) are adopted. The key idea is to parameterize the displacement jumps on the cohesive interfaces by a reduced basis of global ansatz functions. Micromechanical considerations and the potential structure of the constitutive models lead to a variational formulation and reduced equilibrium conditions. The effect of the preanalysis phase on the accuracy is investigated using geometrically optimal training directions. The reduced model is tested for three-dimensional microstructures. Besides the effective stress response, the tension–compression asymmetry and the distribution of the separation of the interface are investigated. Memory savings on the order of \(10^5\) are realized. The computing time is reduced considerably.

Keywords

Nonlinear homogenization Cohesive interfaces Reduced order model Tension–compression asymmetry Potential-based reduced basis model order reduction (pRBMOR) 

Notes

Acknowledgments

The authors acknowledge the financial support of the German research foundation (DFG), grant numbers FR-2702/3, FR-2702/4, FR-2702/7 and within the Emmy Noether program of DFG via grant DFG-FR2702/6. The valuable input in the context of the CoSiMOR scientific network (funded by DFG grants FR-2702/4 and FR-2702/7) and, in particular, the discussions with Bernard Haasdonk regarding kernel methods are acknowledged. Additionally, funding of this work within the KIT YIG Computer Aided Material Modeling via the Karlsruhe Institute of Technology (KIT) in the context of the Excellence Initiative of the German Research Foundation (DFG) is highly acknowledged.

References

  1. 1.
    Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217MathSciNetCrossRefGoogle Scholar
  5. 5.
    Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, BerlinGoogle Scholar
  6. 6.
    Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58zbMATHCrossRefGoogle Scholar
  7. 7.
    Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mori T, Tanaka K (1973) Average stress in a matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 23:571–574CrossRefGoogle Scholar
  10. 10.
    Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679zbMATHCrossRefGoogle Scholar
  12. 12.
    Fritzen F, Böhlke T (2011) Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. Int J Solids Struct 48:706–718zbMATHCrossRefGoogle Scholar
  13. 13.
    Ponte-Castañeda P (1991) The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39(1):45–71zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ponte-Castañeda P (1992) New variational principles in plasticity and their application to composite materials. J Mech Phys Solids 40(8):1757–1788zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Suquet P (1992) On bounds for the overall potential of power law materials containing voids with an arbitrary shape. Mech Res Commun 19(1):51–58zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Ponte-Castañeda P (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I theory. J Mech Phys Solids 50(4):737–757zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. J Mech Phys Solids 55(9):1932–1963zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: II: A second-order procedure. J Mech Phys Solids 55(9):1964–1992zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Danas K, Ponte-Castañeda P (2009) A finite-strain model for anisotropic viscoplastic porous media: I–Theory. Eur J Mech A 28(3):387–401zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Feyel F, Chaboche JL (2000) FE\(^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330zbMATHCrossRefGoogle Scholar
  21. 21.
    Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. J Numer Methods Eng 55:1285–1322zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550zbMATHCrossRefGoogle Scholar
  23. 23.
    Drosopoulos GA, Wriggers P, Stavroulakis GE (2014) A multi-scale computational method including contact for the analysis of damage in composite materials. Comput Mater Sci 95:522–535CrossRefGoogle Scholar
  24. 24.
    Carrere N, Maire JF, Kruch S, Chaboche JL (2004) Multiscale analysis of SiC/Ti composites. Mater Sci Eng A 365(1—-2):275–281 (Multiscale Materials Modelling)CrossRefGoogle Scholar
  25. 25.
    Verhoosel CV, Remmers JJC, Gutiérrez MA, de Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng 83(8–9):1155–1179zbMATHCrossRefGoogle Scholar
  26. 26.
    Fritzen F, Hodapp M (2015) The Finite Element Square Reduced (FE\(^{{2}\text{R}}\)) method with GPU acceleration: towards threedimensional two-scale simulations. Int J Numer Meth Eng (submitted)Google Scholar
  27. 27.
    Ladevèze P, Passieux JC, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296. doi: 10.1016/j.cma.2009.06.023 zbMATHCrossRefGoogle Scholar
  28. 28.
    Lamari H, Ammar A, Cartraud P, Legrain G, Chinesta F, Jacquemin F (2010) Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions. Arch Comput Methods Eng 17(4):373–391. doi: 10.1007/s11831-010-9051-4 zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372. doi: 10.1007/s11831-010-9053-2 zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75–89. doi: 10.1002/nme.2406 zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Ryckelynck D, Benziane D (2010) Multi-level a priori hyper reduction of mechanical models involving internal variables. Comput Methods Appl Mech Eng 199:1134–1142zbMATHCrossRefGoogle Scholar
  32. 32.
    Astrid P, Weiland S, Willcox K, Backx T (2004) Missing point estimation in models described by proper orthogonal decomposition. In: 43rd IEEE conference on decision and control, 2004. CDC, vol 2, pp 1767–1772. doi: 10.1109/CDC.2004.1430301
  33. 33.
    Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251. doi: 10.1109/TAC.2008.2006102 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Barrault M, Maday Y, Nguyen N, Patera A (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math Acad Sci Paris Ser I 339:667–672zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Chaturantabut S, Sorensen DC (2012) A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J Numer Anal 50(1):46–63zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Hernández J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computationalmultiscale homogenization. Comput Methods Appl Mech Eng 276:149–189. doi: 10.1016/j.cma.2014.03.011 CrossRefGoogle Scholar
  37. 37.
    Engquist EWB (2003) The heterognous multiscale methods. Commun Math Sci 1(1):87–132zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Abdulle A, Bai Y (2012) Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J Comput Phys 231(21):7014–7036. doi: 10.1016/j.jcp.2012.02.019 zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Methods Eng 84(7):803–829Google Scholar
  40. 40.
    Fritzen F, Böhlke T (2013) Reduced basis homogenization of viscoelastic composites. Compos Sci Technol 76:84–91CrossRefGoogle Scholar
  41. 41.
    Halphen B, Nguyen QS (1975) Sur les matériaux standards generalisés. Journal de Mécanique 14(1):39–63zbMATHGoogle Scholar
  42. 42.
    Fritzen F, Forest S, Böhlke T, Kondo D, Kanit T (2012) Computational homogenization of elasto-plastic porous metals. Int J Plast 29:102–119CrossRefGoogle Scholar
  43. 43.
    Feyel F (1999) Multiscale FE\(^{2}\) elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1–4):344–354Google Scholar
  44. 44.
    Feyel F (2003) A multilevel finite element method (FE\(^{2}\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(192):3233–3244zbMATHCrossRefGoogle Scholar
  45. 45.
    Fritzen F (2011) Microstructural modeling and computational homogenization of the physically linear and nonlinear constitutive behavior of micro-heterogeneous materials. Schriftenreihe Kontinuumsmechanik im Maschinenbau 1, KIT Scientific Publishing, Karlsruhe. ISBN 978-3-86644-699-1Google Scholar
  46. 46.
    Yvonnet J, Gonzalez D, He QC (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198(33–36):2723–2737zbMATHCrossRefGoogle Scholar
  47. 47.
    Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. J Multiscale Comput Eng 11(3):201–225CrossRefGoogle Scholar
  48. 48.
    Fritzen F, Kochmann D (2014) Material instability-induced extreme damping in composites: a computational study. Int J Solids Struct 51:4101–4112CrossRefGoogle Scholar
  49. 49.
    Böhlke T, Brüggemann C (2001) Graphical representation of the generalized Hooke’s law. Technische Mechanik 21(2):145–158Google Scholar
  50. 50.
    Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437:311–327zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Dvorak GJ, Bahei-El-Din YA, Wafa AM (1994) The modeling of inelastic composite materials with the transformation field analysis. Model Simul Mater Sci Eng 2(2):571–586CrossRefGoogle Scholar
  52. 52.
    Haasdonk B (2013) Convergence rates of the POD-Greedy method. ESAIM 47:859–873zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Schölkopf B, Smola AJ (2002) Learning with Kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning series. MIT Press, Cambridge. ISBN 0-262-19475-9; 978-0-262-19475-4Google Scholar
  54. 54.
    Wirtz D, Karajan N, Haasdonk B (2015) Surrogate modeling of multiscale models using kernel methods. Int J Numer Methods Eng 101(1):1–28MathSciNetCrossRefGoogle Scholar
  55. 55.
    Leuschner M, Fritzen F, van Dommelen JAW, Hoefnagels JPM (2015) Potential-based constitutive models for cohesive interfaces: theory, implementation and examples. Compos Part B 68:38–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Emmy Noether Group EMMA – Efficient Methods for Mechanical Analysis, Chair of Continuum Mechanics, Institute of Applied Mechanics (CE)University of StuttgartStuttgartGermany

Personalised recommendations