Advertisement

Computational Mechanics

, Volume 55, Issue 6, pp 1201–1209 | Cite as

Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and \(YZ\beta \) shock-capturing

  • Franco Rispoli
  • Giovanni Delibra
  • Paolo Venturini
  • Alessandro Corsini
  • Rafael Saavedra
  • Tayfun E. Tezduyar
Original Paper

Abstract

The \(YZ\beta \) shock-capturing technique, which is residual-based, was introduced in conjunction with the Streamline-Upwind/Petrov–Galerkin (SUPG) formulation of compressible flows in conservation variables. It was later also combined with the variable subgrid scale (V-SGS) formulation of compressible flows in conservation variables and successfully tested on 2D and 3D computation of inviscid flows with shocks. In this paper we extend that combined method to inviscid flow computations with particle tracking and particle–shock interaction. Particles are tracked individually, assuming one-way dependence between the particle dynamics and the flow. We present two steady-state test computations with particle–shock interaction, one in 2D and one in 3D, and show that the overall method is effective in particle tracking and particle–shock interaction analysis in compressible flows.

Keywords

Particle tracking Particle–shock interaction Compressible flow V-SGS stabilization \(YZ\beta \) shock-capturing 

Notes

Acknowledgments

This work was supported by the Department of Mechanical and Aerospace Engineering, University of Rome “La Sapienza” under the Bilateral Agreement UDEP/“La Sapienza”. Partial support was provided by the Italian Ministry of University and Academic Research, under the Visiting Professor Program, 2009. The last author was supported in part by ARO Grant W911NF-12-1-0162.

References

  1. 1.
    Sommerfeld M (1985) The unsteadiness of shock waves propagating though gas-particle mixtures. Exp Fluids 3:197–206CrossRefGoogle Scholar
  2. 2.
    Boiko VM, Kiselev VP, Kiselev SP, Papyrin AN, Poplavsky SV, Fomin VM (1996) Shock wave interaction with a cloud of particles. Shock Waves 7:275–285CrossRefGoogle Scholar
  3. 3.
    Chang EJ, Kailasanath K (2003) Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12:333–341zbMATHCrossRefGoogle Scholar
  4. 4.
    Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD, vol 34. ASME, New York, pp 19–35Google Scholar
  5. 5.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting, AIAA Paper 83–0125, Reno, NevadaGoogle Scholar
  7. 7.
    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284. doi: 10.1016/0045-7825(85)90157-9 zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63:97–112zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Le Beau GJ, Tezduyar TE (1991) Finite element computation of compressible flows with the SUPG formulation. In: Dhaubhadel MN, Engelman MS, Reddy JN (eds) Advances in finiteelement analysis in fluid dynamics, FED-vol 123. ASME, New York, pp 21–27Google Scholar
  10. 10.
    Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422. doi: 10.1016/0045-7825(93)90033-T zbMATHCrossRefGoogle Scholar
  11. 11.
    Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces, Volume 3: Fluids, Chapter 17. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics. Wiley, West SussexGoogle Scholar
  12. 12.
    Tezduyar TE (2004) Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows. In: Proceedings of the European Congress on computational methods in applied sciences and engineering, ECCOMAS 2004 (CD-ROM), Jyvaskyla, FinlandGoogle Scholar
  13. 13.
    Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632. doi: 10.1016/j.cma.2005.05.032 zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-capturing. Comput Fluids 36:147–159. doi: 10.1016/j.compfluid.2005.07.009 zbMATHCrossRefGoogle Scholar
  15. 15.
    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta \) shock-capturing. Comput Mech 38:469–481. doi: 10.1007/s00466-005-0025-6 zbMATHCrossRefGoogle Scholar
  16. 16.
    Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput Methods Appl Mech Eng 194:4797–4823zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401zbMATHCrossRefGoogle Scholar
  18. 18.
    Rispoli F, Saavedra R (2006) A stabilized finite element method based on SGS models for compressible flows. Comput Methods Appl Mech Eng 196:652–664zbMATHCrossRefGoogle Scholar
  19. 19.
    Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZ\(\beta \) shock-capturing. Int J Numer Methods Fluids 54:695–706. doi: 10.1002/fld.1447 zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rispoli F, Saavedra R, Menichini F, Tezduyar TE (2009) Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ\(\beta \) shock-capturing. J Appl Mech 76:021209. doi: 10.1115/1.3057496 CrossRefGoogle Scholar
  21. 21.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ\(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608. doi: 10.1002/fld.1484 zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137– 4152zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79: 010905CrossRefGoogle Scholar
  24. 24.
    Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230:4536– 4558zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727zbMATHCrossRefGoogle Scholar
  26. 26.
    Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZ\(\beta \) shock-capturing. J Appl Mech 76:021208. doi: 10.1115/1.3062968 CrossRefGoogle Scholar
  27. 27.
    Corsini A, Rispoli F, Sheard AG, Takizawa K, Tezduyar TE, Venturini P (2014) A variational multiscale method for particle-cloud tracking in turbomachinery flows. Comput Mech 54:1191–1202. doi: 10.1007/s00466-014-1050-0 zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi: 10.1002/fld.2221 zbMATHCrossRefGoogle Scholar
  29. 29.
    Hamed A (1998) Effect of particle characteristics on trajectories and blade impact. J Fluids Eng 110:33–37CrossRefGoogle Scholar
  30. 30.
    Seggiani M, Bardi A, Vitolo S (2000) Prediction of fly-ash size distribution: a correlation between the char transition radius and coal properties. Fuel 79:999–1002CrossRefGoogle Scholar
  31. 31.
    Sommerfeld M, van Wachem B, Olimans R (2009) Dispersed turbulent multi-phase flow in Best practice guidelines, ERCOFTAC, BrusselsGoogle Scholar
  32. 32.
    Zhou H, Jensen PA, Frandsen FJ (2007) Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler. Fuel 86:1519–1533CrossRefGoogle Scholar
  33. 33.
    Crowe CT, Troutt TR, Chung JN (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28:11–43MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tedeschi G, Gouin H, Elena M (1999) Motion of tracer particles in supersonic flows. Exp Fluids 26:288–296CrossRefGoogle Scholar
  35. 35.
    Miranda FC, Heinrich A, Sesterhenn J (2013) The influence of the fluid acceleration term on the simulation of a particle-laden compressible jet with shock waves. In: European Turbulence Conference 14. ENS de Lyon, LyonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Franco Rispoli
    • 1
  • Giovanni Delibra
    • 1
  • Paolo Venturini
    • 1
  • Alessandro Corsini
    • 1
  • Rafael Saavedra
    • 2
  • Tayfun E. Tezduyar
    • 3
  1. 1.Dipartimento di Ingegneria Meccanica e AerospazialeUniversità degli Studi di Roma “La Sapienza”RomaItaly
  2. 2.Departamento de Ingeneria Mecánica-ElectricaUniversidad de PiuraPiuraPeru
  3. 3.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations