Computational Mechanics

, Volume 55, Issue 5, pp 983–998 | Cite as

Computational homogenization of fibrous piezoelectric materials

  • Claudio MaruccioEmail author
  • Laura De Lorenzis
  • Luana Persano
  • Dario Pisignano
Original Paper


Flexible piezoelectric devices made of polymeric materials are widely used for micro- and nano-electro-mechanical systems. In particular, numerous recent applications concern energy harvesting. Due to the importance of computational modeling to understand the influence that microscale geometry and constitutive variables exert on the macroscopic behavior, a numerical approach is developed here for multiscale and multiphysics modeling of thin piezoelectric sheets made of aligned arrays of polymeric nanofibers, manufactured by electrospinning. At the microscale, the representative volume element consists in piezoelectric polymeric nanofibers, assumed to feature a piezoelastic behavior and subjected to electromechanical contact constraints. The latter are incorporated into the virtual work equations by formulating suitable electric, mechanical and coupling potentials and the constraints are enforced by using the penalty method. From the solution of the micro-scale boundary value problem, a suitable scale transition procedure leads to identifying the performance of a macroscopic thin piezoelectric shell element.


Computational homogenization Electromechanical contact Multiphysics modeling Multiscale modeling Polymer nanofibers Nonlinear piezoelectricity 



Claudio Maruccio acknowledges the support from the Italian MIUR through the project FIRB Futuro in Ricerca 2010 Structural mechanics models for renewable energy applications (RBFR107AKG). Laura De Lorenzis, Dario Pisignano and Luana Persano acknowledge the support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013), ERC Starting Grants INTERFACES (L. De Lorenzis, Grant agreement No. 279439) and NANO-JETS (D. Pisignano and L. Persano, Grant agreement No. 306357). Furthermore, the authors gratefully acknowledge the reviewers for useful comments and suggestions that contributed to improve the quality of the paper.


  1. 1.
    Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRefGoogle Scholar
  2. 2.
    Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137CrossRefGoogle Scholar
  3. 3.
    Gao Y, Wang ZL (2007) Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7:2499–2505CrossRefGoogle Scholar
  4. 4.
    Liu ZH, Pan CT, Lin LW, Lai HW (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens Actuators A 193:13–24CrossRefGoogle Scholar
  5. 5.
    Liu ZH, Pan CT, Lin LW, Huang JC, Ou ZY (2014) Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater Struct 23(2):025003CrossRefGoogle Scholar
  6. 6.
    Persano L, Dagdeviren C, Maruccio C, De Lorenzis L, Pisignano D (2014) Cooperativity in the enhanced piezoelectric response of polymer nanowires. Adv Mater 26:7574–7580CrossRefGoogle Scholar
  7. 7.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  8. 8.
    Pisignano D (2013) Polymer nanofibers. Royal Society of Chemistry, CambridgeGoogle Scholar
  9. 9.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRefGoogle Scholar
  10. 10.
    Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials processing and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  11. 11.
    Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of PVDF. Nat Commun 1633:4Google Scholar
  12. 12.
    Geers MGD, Kouznetsova VG, Brekelmans WAM (2003) Multi-scale first-order and second-order computational homogenisation of microstructures towards continua. Int J Multiscale Comput Eng 1:371–386CrossRefGoogle Scholar
  13. 13.
    Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37–48CrossRefGoogle Scholar
  14. 14.
    Miehe C (2003) Computational micro-to-macro transitions for discretized microstructures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192:559–591MathSciNetCrossRefGoogle Scholar
  15. 15.
    Suquet PM (1985) Local and global aspects in the mathematical theory of plasticity. In: Sawczuk A, Bianchi G (eds) Plasticity today: modelling, methods and applications. Elsevier Applied Science Publishers, London, pp 279–310Google Scholar
  16. 16.
    Schroeder J, Keip M (2012) Two-scale homogenization of electromechanically coupled boundary value problems—Consistent linearization and applications. Comput Mech 50(2):229–244MathSciNetCrossRefGoogle Scholar
  17. 17.
    Castillero JB, Diaz GR, Sabina FJ, Rodriguez-Ramos R (2001) Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents-II. Piezoelectric and square symmetry. Mech Mater 33:237–248CrossRefGoogle Scholar
  18. 18.
    Sabina FJ, Rodriguez-Ramos R, Castillero JB, Diaz GR (2001) Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents-II. Piezoelectric and hexagonal symmetry. J Mech Phys Solids 49:1463–1479CrossRefGoogle Scholar
  19. 19.
    Berger H, Gabbert U, Koeppe H, Rodriguez-Ramos R, Bravo-Castillero J, Diaz GR, Otero JA, Maugin GA (2003) Finite element and asymptotic homogenization methods applied to smart composite materials. Comput Mech 33:61–67CrossRefGoogle Scholar
  20. 20.
    Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Guinovart-Diaz R, Otero JA, Bravo-Castillero J (2004) An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int J Solids Struct 42:5692– 5714CrossRefGoogle Scholar
  21. 21.
    Klinkel S, Wagner W (2008) A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications. Comput Struct 86:38–46CrossRefGoogle Scholar
  22. 22.
    Klinkel S, Gruttmann F, Wagner W (2008) A mixed shell formulation accounting for thickness strains and finite strain 3D material models. Int J Numer Methods Eng 75:945–970CrossRefGoogle Scholar
  23. 23.
    Schulz K, Klinkel S, Wagner W (2011) A finite element formulation for piezoelectric shell structures considering geometrical and material non-linearities. Int J Numer Methods Eng 87:491–520MathSciNetCrossRefGoogle Scholar
  24. 24.
    Coenen EWC, Kouznetsova VG, Geers MGD (2010) Computational homogenization for heterogeneous thin sheets. Int J Numer Methods Eng 83:1180–1205CrossRefGoogle Scholar
  25. 25.
    Fillep S, Mergheim J, Steinmann P (2013) Computational modelling and homogenization of technical textiles. Eng Struct 50:68–73CrossRefGoogle Scholar
  26. 26.
    Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRefGoogle Scholar
  27. 27.
    Korelc J (2009) Automation of primal and sensitivity analysis of transient coupled problems. Comput Mech 44(5):631–649MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bischoff M, Wall WA, Bletzinger K-U, Ramm E (2004) Models and Finite Elements for Thin-walled Structures. Encycl Comput Mech Chapter 3:59–137Google Scholar
  29. 29.
    Green AE, Naghdi PM (1974) On the derivation of shell theories by direct approach. J Appl Mech 41:173CrossRefGoogle Scholar
  30. 30.
    Brank B, Korelc J, Ibrahimbegovic A (2002) Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation. Comput Struct 80:699– 717CrossRefGoogle Scholar
  31. 31.
    Steinmann P (2011) Computational nonlinear electro-elasticity—getting Started. Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials, CISM International Centre for Mechanical Sciences 527:181–230Google Scholar
  32. 32.
    Wriggers P (2006) Computational contact mechanics. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Zavarise G, De Lorenzis L (2009) The node-to-segment algorithm for 2D frictionless contact: classical formulation and special cases. Comput Methods Appl Mech Eng 198:3428–3451CrossRefGoogle Scholar
  34. 34.
    Zavarise G, De Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Nume Methods Eng 79(4):379–416CrossRefGoogle Scholar
  35. 35.
    Lengiewicz J, Korelc J, Stupkiewicz S (2011) Automation of finite element formulations for large deformation contact problems. Int J Numer Methods Eng 85:1252–1279MathSciNetGoogle Scholar
  36. 36.
    De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM Mitt 37(1):85–123MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tandon GP, Weng GJ (1988) A theory of particle reinforced plasticity. J Appl Mech 55:126–135CrossRefGoogle Scholar
  38. 38.
    Berveiller M, Zaoui A (1979) An extension of the self-consistent scheme to plastically-flowing polycrystals. J Mech Phys Solids 26:325–344CrossRefGoogle Scholar
  39. 39.
    Gonzalez C, Segurado J, LLorca J (2004) Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models. J Mech Phys Solids 52:1573–1593CrossRefGoogle Scholar
  40. 40.
    Yang J (2005) An introduction to the theory of piezoelectricity. Springer Science + Business Media Inc, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Claudio Maruccio
    • 1
    Email author
  • Laura De Lorenzis
    • 2
  • Luana Persano
    • 3
  • Dario Pisignano
    • 3
    • 4
  1. 1.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  2. 2.Institut für Angewandte MechanikTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT)LecceItaly
  4. 4.Dipartimento di Matematica e Fisica “E. De Giorgi”Università del SalentoLecceItaly

Personalised recommendations