Computational Mechanics

, Volume 55, Issue 3, pp 561–576 | Cite as

A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach

  • Hisanao Ouchi
  • Amit Katiyar
  • Jason York
  • John T. Foster
  • Mukul M. Sharma
Original Paper


A state-based non-local peridynamic formulation is presented for simulating fluid driven fractures in an arbitrary heterogeneous poroelastic medium. A recently developed peridynamic formulation of porous flow has been coupled with the existing peridynamic formulation of solid and fracture mechanics resulting in a peridynamic model that for the first time simulates poroelasticity and fluid-driven fracture propagation. This coupling is achieved by modeling the role of pore pressure on the deformation of porous media and vice versa through porosity variation with medium deformation, pore pressure and total mean stress. The poroelastic model is verified by simulating the one-dimensional consolidation of fluid saturated rock. An additional porous flow equation with material permeability dependent on fracture width is solved to simulate fluid flow in the fractured region. Finally, single fluid-driven fracture propagation with a two-dimensional plane strain assumption is simulated and verified against the corresponding classical analytical solution.


Peridynamic theory Hydraulic fracturing Coupled fluid flow and geomechanics Crack propagation Non-local formulation 



This work is supported by Department of Energy (DOE) Grant No. DE-FOA-0000724 and by the member companies participating in the Joint Industry Program on Hydraulic Fracturing and Sand Control at the University of Texas at Austin. We thank Michael Brothers, a graduate student working with JTF, for sharing the insight on implementation of peridynamic formulation into a computation code.


  1. 1.
    Dahi Taleghani A, Olson JE (2014) How natural fractures could affect hydraulic-fracture geometry. SPE J 19:161–171. doi: 10.2118/167608-PA CrossRefGoogle Scholar
  2. 2.
    Warpinski NR, Branagan PT (1989) Altered-stress fracturing. J Pet Technol 41:990–997. doi: 10.2118/17533-PA CrossRefGoogle Scholar
  3. 3.
    Fisher MK, Wright CA, Davidson BM, Goodwin AK, Fielder EO, Buckler WS, Steinsberger NP (2002) Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale SPE annual technical conference and exhibition society of petroleum engineers. San Antonio, Texas. doi: 10.2118/77441-MS
  4. 4.
    Warpinski NR, Lorenz JC, Branagan PT, Myal FR, Gall BL (1993) Examination of a cored hydraulic fracture in a deep gas well (includes associated papers 26302 and 26946). SPE Prod Facil 8:150–158. doi: 10.2118/22876-PA CrossRefGoogle Scholar
  5. 5.
    Fast RE, Murer AS, Timmer RS (1994) Description and analysis of cored hydraulic fractures, Lost Hills Field, Kern County, California. SPE Prod Facil 9:107–114. doi: 10.2118/24853-PA CrossRefGoogle Scholar
  6. 6.
    Gale JFW, Reed RM, Holder J (2007) Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull 91:603–622. doi: 10.1306/11010606061 CrossRefGoogle Scholar
  7. 7.
    Hossain MM, Rahman MK (2008) Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Pet Sci Eng 60:86–104. doi: 10.1016/j.petrol.2007.05.007 CrossRefGoogle Scholar
  8. 8.
    Warpinski NR, Moschovidis ZA, Parker CD, Abou-Sayed IS (1994) Comparison study of hydraulic fracturing models-test case: GRI staged field experiment no. 3 (includes associated paper 28158). SPE Prod Facil 9:7–16. doi: 10.2118/25890-PA CrossRefGoogle Scholar
  9. 9.
    Yew CH (1997) Mechanics of hydraulic fracturing. Gulf Pub. Co, HoustonGoogle Scholar
  10. 10.
    Simonson ER, Abou-Sayed AS, Clifton RJ (1978) Containment of massive hydraulic fractures. Soc Pet Eng 18:17–32. doi: 10.2118/6089-PA Google Scholar
  11. 11.
    Settari A, Cleary MP (1986) Development and testing of a pseudo-three-dimensional model of hydraulic fracture geometry. SPE Prod Eng. doi: 10.2118/10505-PA
  12. 12.
    Warpinski NR, Smith MB (1989) Rock mechanics and fracture geometry. In: Gidley JL (ed) Recent advances in hydraulic fracturing, Monograph Vol 12Google Scholar
  13. 13.
    Dong CY, de Pater CJ (2001) Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing. Comput Methods Appl Mech Eng 191:745–760. doi: 10.1016/S0045-7825(01)00273-0 CrossRefzbMATHGoogle Scholar
  14. 14.
    Rungamornrat J, Wheeler MF, Mear ME (2005) Coupling of fracture/non-newtonian flow for simulating nonplanar evolution of hydraulic fractures SPE annual technical conference and exhibition society of petroleum engineers. Dallas, Texas. doi: 10.2118/96968-MS
  15. 15.
    Dahi-Taleghani A, Olson JE (2011) Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between Induced and natural fractures. SPE J 16:575–581. doi: 10.2118/124884-PA CrossRefGoogle Scholar
  16. 16.
    Olson JE, Wu K (2012) Sequential vs. simultaneous multizone fracturing in horizontal wells: insights from a non-planar, multifrac numerical model SPE hydraulic fracturing technology conference society of petroleum engineers, The Woodlands, Texas, USA. doi: 10.2118/152602-MS
  17. 17.
    Wu K, Olson JE (2013) Investigation of the impact of fracture spacing and fluid properties for interfering simultaneously or sequentially generated hydraulic fractures. SPE-140253-MS 28:427–436. doi: 10.2118/163821-PA Google Scholar
  18. 18.
    Shin DH, Sharma MM (2014) Factors controlling the simultaneous propagation of multiple competing fractures in a horizontal well SPE hydraulic fracturing technology conference society of petroleum engineers. The Woodlands, Texas, USA. doi: 10.2118/168599-MS
  19. 19.
    Hwang J, Sharma MM (2013) A 3-dimensional fracture propagation model for long-term water injection 47th US rock mechanics/geomechanics symposium American Rock Mechanics Association. California, San FranciscoGoogle Scholar
  20. 20.
    Kresse O, Weng X, Gu H, Wu R (2013) Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mech Rock Eng 46:555–568. doi: 10.1007/s00603-012-0359-2 CrossRefGoogle Scholar
  21. 21.
    Weng X, Kresse O, Cohen CE, Wu R, Gu H (2011) Modeling of hydraulic fracture network propagation in a naturally fractured formation. SPE-140253-MS 26:368–380. doi: 10.2118/140253-MS Google Scholar
  22. 22.
    Rahman MM, Rahman MK (2010) A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil/gas sand. Energy Sources, Part A 32:1416–1436. doi: 10.1080/15567030903060523 CrossRefGoogle Scholar
  23. 23.
    Garcia JG, Teufel LW (2005) Numerical simulation of fully coupled fluid-flow / geomechanical deformation in hydraulically fractured reservoirs SPE production operations symposium society of petroleum engineers. Oklahoma City, Oklahoma. doi: 10.2118/94062-MS
  24. 24.
    Secchi S, Schrefler BA (2012) A method for 3-D hydraulic fracturing simulation. Int J Fract 178:245–258. doi: 10.1007/s10704-012-9742-y CrossRefGoogle Scholar
  25. 25.
    Carter BJ, Desroches J, Ingraffea AR, Wawrzynek PA (2000) Simulating fully 3D hydraulic fracturing. In: Zaman M, Booker J, Gioda G (eds) Modeling in geomechanics. Wiley Publishers, New YorkGoogle Scholar
  26. 26.
    Medlin WL, Fitch JL (1988) Abnormal treating pressures in massive hydraulic fracturing treatments. J Pet Technol; (United States) 40(5):633–642CrossRefGoogle Scholar
  27. 27.
    Palmer ID, Veatch RW Jr (1990) Abnormally high fracturing pressures in step-rate tests. SPE Prod Eng 5:315–323. doi: 10.2118/16902-PA CrossRefGoogle Scholar
  28. 28.
    Bažant Z (1984) Size effect in blunt fracture: concrete, rock metal. J Eng Mech 110:518–535. doi: 10.1061/(ASCE)0733-9399(1984)110:4(518)
  29. 29.
    Bažant ZkP, Chen E-P (1997) Scaling of structural failure. Appl Mech Rev 50:593–627. doi: 10.1115/1.3101672 CrossRefGoogle Scholar
  30. 30.
    Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci 48:712–727. doi: 10.1016/j.ijrmms.2011.04.013 CrossRefGoogle Scholar
  31. 31.
    Shimizu H, Murata S, Ishida T (2009) The distinct element analysis for hydraulic fracturing considering the fluid viscosity American Rock Mechanics AssociationGoogle Scholar
  32. 32.
    Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. doi: 10.1016/j.ijrmms.2004.09.011 CrossRefGoogle Scholar
  33. 33.
    Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93:13–37. doi: 10.1007/s10659-008-9163-3 CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech 40:395–409. doi: 10.1016/j.ijnonlinmec.2004.08.004 CrossRefzbMATHGoogle Scholar
  36. 36.
    Hu W, Ha YD, Bobaru F (2011) Modeling dynamic dracture and damage in a fiber-reinforced composite lamina with peridynamics. 9:707–726 doi: 10.1615/IntJMultCompEng002651
  37. 37.
    Bobaru F, Ha Y, Hu W (2012) Damage progression from impact in layered glass modeled with peridynamics. Centeurjeng 2:551–561. doi: 10.2478/s13531-012-0020-6 Google Scholar
  38. 38.
    Turner DZ (2013) A non-local model for fluid-structure interaction with applications in hydraulic fracturing. Int J Comput Methods Eng Sci Mech 14:391–400. doi: 10.1080/15502287.2013.784382 CrossRefMathSciNetGoogle Scholar
  39. 39.
    Rajagopal KR, Tao L (1995) Mechanics of mixtures. World Scientific, Singapore, River EdgezbMATHGoogle Scholar
  40. 40.
    Truesdell C, Toupin R (1960) The classical field theories. Springer, BerlinGoogle Scholar
  41. 41.
    Epstein M (2012) The elements of continuum biomechanics John Wiley & Sons, Chichester. West Sussex, HobokenCrossRefGoogle Scholar
  42. 42.
    Katiyar A, Foster JT, Ouchi H, Sharma MM (2014) A peridynamic formulation of pressure driven convective fluid transport in porous media. J Comput Phys 261:209–229CrossRefMathSciNetGoogle Scholar
  43. 43.
    Khristianovic SA, Zheltov YP (1955) Formation of vertical fractures by means of highly viscous liquid 4th world petroleum congress world petroleum congress, Rome, ItalyGoogle Scholar
  44. 44.
    Geertsma J, De Klerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Pet Technol 21:1571–1581. doi: 10.2118/2458-PA CrossRefGoogle Scholar
  45. 45.
    Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81:1242–1258. doi: 10.1002/nme.2725 zbMATHGoogle Scholar
  47. 47.
    Seleson P and Parks M (2011) On the role of the influence function in the peridynamic theory. 9:689–706 doi: 10.1615/IntJMultCompEng.2011002527
  48. 48.
    Foster JT, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. 9:675–688 doi: 10.1615/IntJMultCompEng.2011002407
  49. 49.
    Tran D, Settari A, Nghiem L (2002) New iterative coupling between a reservoir simulator and a geomechanics module. doi: 10.2118/88989-PA
  50. 50.
    Zhou K, Gunzburger M, Lehoucq RB, Du Q (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci 23:493–540. doi: 10.1142/S0218202512500546 CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Ha YD, Bobaru F (2009) Traction boundary conditions in peridynamics: a convergence study, technical report Department of Engineering Mechanics. University of Nebraska-Lincoln, Lincoln, NEGoogle Scholar
  52. 52.
    Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56:1566–1577. doi: 10.1016/j.jmps.2007.08.004 CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Jaeger JC, Cook NGW, Zimmerman R (2007) Fundamentals of rock mechanics. Wiley, BlackwellGoogle Scholar
  54. 54.
    Bobaru F, Duangpanya M (2012) A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J Comput Phys 231:2764–2785. doi: 10.1016/ CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77:852–877. doi: 10.1002/nme.2439
  56. 56.
    Khristianovic SA, Zheltov YP (1955) Formation of vertical fractures by means of highly viscous liquid proceedings of 4th world petroleum congress world petroleum congress, Rome, Italy, pp 579–586Google Scholar
  57. 57.
    Sneddon IN (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc R Soc Lond Ser Math Phys Sci 187:229–260. doi: 10.1098/rspa.1946.0077 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hisanao Ouchi
    • 1
  • Amit Katiyar
    • 1
  • Jason York
    • 1
  • John T. Foster
    • 1
  • Mukul M. Sharma
    • 1
  1. 1.Department of Petroleum and Geosystems EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations