Computational Mechanics

, Volume 55, Issue 6, pp 1143–1154 | Cite as

Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures

  • Michael Kornhaas
  • Michael SchäferEmail author
  • Dörte C. Sternel
Original Paper


An integrated hybrid approach for the numerical simulation of aeroacoustics at low Mach numbers is presented. The method is based on a viscous/acoustic splitting. The turbulent incompressible background flow is computed with large eddy simulation, based on the incompressible Navier-Stokes equations, whereas the acoustics are computed from linearized Euler equations with a high-resolution scheme. The focus is on the numerical efficiency of the approach. To accelerate the computations, hierarchical grids and a frozen fluid approach for the acoustics are employed and investigated. For validation and the investigation of the numerical efficiency and accuracy the sound emission of a plate in the turbulent wake of a circular cylinder is employed as a test case.


Aeroacoustics Numerical simulation Viscous/acoustic splitting High-resolution scheme Hierarchical grids 



Thanks are addressed to Frank Kameier from the University of Applied Science Düsseldorf as well as to Klaus Becker and Michael Winkler from the University of Applied Science Köln for the idea to study the cylinder-plate configuration and for providing the corresponding experimental results.


  1. 1.
    FASTEST-Manual (2005) Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau, Technische Universität DarmstadtGoogle Scholar
  2. 2.
    Ali I, Becker S, Utzmann J, Munz CD (2008) Aeroacoustic study of a forward facing step using linearized Euler equations. Physica D 237:2184–2189zbMATHCrossRefGoogle Scholar
  3. 3.
    Ali I, Escobar M, Kaltenbacher M, Becker S (2008) Time domain computation of flow induced sound. Comput Fluids 37:349–359zbMATHCrossRefGoogle Scholar
  4. 4.
    Bailly C, Juvé D (1999) A stochastic approach to compute subsonic noise unsing Linearized Euler Equations. AIAA Paper 99–1872Google Scholar
  5. 5.
    Berland J, Lafon P, Crouzet F, Daude F, Bailly C (2010) Numerical Insight into Sound Sources of a Rod-Airfoil Flow Configuration Using Direct Noise Calculation. In: 16th AIAA/CEAS Aeroacoustics ConferenceGoogle Scholar
  6. 6.
    Breuer M (1998) Large Eddy Simulations of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int J Numer Methods Fluids 28:1281–1302zbMATHCrossRefGoogle Scholar
  7. 7.
    Cabana M, Fortuné V, E L (2010) Direct computation of the sound radiated by shear layers using upwind compact schemes. In: Direct and large-eddy simulation VII, ERCOFTAC Series, vol 13, SpringerGoogle Scholar
  8. 8.
    Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. J Comput Phys 188:365–398zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765zbMATHCrossRefGoogle Scholar
  10. 10.
    Gloerfelt X, Lafon P (2008) Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number. Comput Fluids 37:388–401zbMATHCrossRefGoogle Scholar
  11. 11.
    Gloerfelt X, Bailly C, Juvé D (2003) Direct computation of the noise radiated bya subsonic cavity flow and application of integral methods. J Sound Vib 266:119–146CrossRefGoogle Scholar
  12. 12.
    Hardin J, Pope D (1994) An acoustic/viscous splitting technique for computational aeroacoustics. Theor Comput Fluid Dyn 6:323–340. doi: 10.1007/BF00311844 zbMATHCrossRefGoogle Scholar
  13. 13.
    Jakirlić S, Kadavelil G, Kornhaas M, Schäfer M, Sternel DC, Tropea C (2010) Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int J Heat Fluid Flow 31:820–832CrossRefGoogle Scholar
  14. 14.
    Kornhaas M (2011) Effiziente numerische Methoden für die Simulation aeroakustischer Probleme mit kleinen Machzahlen. PhD thesis, Technische Universität DarmstadtGoogle Scholar
  15. 15.
    Kornhaas M, Sternel DC, Schäfer M (2008) Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization. In: Quality and Reliability of Large-Eddy Simulations, Ercoftac Series 12, Springer, pp 119–130Google Scholar
  16. 16.
    Kravchenko A, Moin P (2000) Numerical studies of flow over a circular cylinder at \(Re_D=3900\). Phys Fluids 12(2):403–417zbMATHCrossRefGoogle Scholar
  17. 17.
    Lehnhäuser T, Schäfer M (2002) Improved linear interpolation practice for finite-volume schemes on complex grids. Int J Numer Methods Fluids 38:625–645zbMATHCrossRefGoogle Scholar
  18. 18.
    Lehnhäuser T, Ertem-Müller S, Schäfer M, Janicka J (2004) Advances in numerical methods for simulating turbulent flows. Prog Comput Fluid Mech 4:208–228CrossRefGoogle Scholar
  19. 19.
    Lighthill M (1952) On sound generated aerodynamically. I. General theorie. Proc Royal Soc London A 211:564–587. doi: 10.1098/rspa.1952.0060 zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Lighthill M (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc Royal Soc London A 222:1–34zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Piomelli U, Steett C, Sarkar S (1997) On the computation of sound by large-eddy simulations. J Eng Math 32:217–236zbMATHCrossRefGoogle Scholar
  22. 22.
    Pope SB (2001) Turbulent flows. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Schäfer M (2006) Computational engineering: introduction to numerical methods. Springer, BerlinGoogle Scholar
  24. 24.
    Seo JH, Moon YJ (2005) The perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J 43(8):1716–1724CrossRefGoogle Scholar
  25. 25.
    Serre E, Minguez M, Pasquetti R, Guilmineau E, Deng G, Kornhaas M, Schäfer M, Fröhlich J, Hinterberger C, Rodi W (2013) On simulating the turbulent flow around the Ahmed body: a French-German collaborative evaluation of LES and DES. Comput Fluids 78:10–23zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Shen W, Sørensen J (1999) Aeroacoustic modelling of low-speed flows. Theor Comput Fluid Dyn 13:271–289zbMATHCrossRefGoogle Scholar
  27. 27.
    Shen W, Sørensen J (1999) Comment on the aeroacoustic formulation of Hardin and Pope. AIAA J 37(1):141–143Google Scholar
  28. 28.
    Shen W, Michelsen J, Sørensen J (2004) A collocated grid finite volume method for aeroacoustic computations of low-speed flows. J Comput Phys 196:348–366zbMATHCrossRefGoogle Scholar
  29. 29.
    Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91(3):99–164CrossRefGoogle Scholar
  30. 30.
    Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  31. 31.
    Wagner CA, Hüttl T, Sagaut P (eds) (2007) Large-eddy simulation for acoustics. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Winkler M (2007) Untersuchungen zum vibroakustischen Verhalten von Plattenstrukturen in Wirbelströmungen. Diplomarbeit, Fachhochschule Köln, Institut für FahrzeugtechnikGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael Kornhaas
    • 1
  • Michael Schäfer
    • 1
    Email author
  • Dörte C. Sternel
    • 1
  1. 1.Institute of Numerical Methods in Mechanical EngineeringTU DarmstadtDarmstadtGermany

Personalised recommendations