Computational Mechanics

, Volume 55, Issue 6, pp 1119–1129 | Cite as

A plug-and-play coupling approach for parallel multi-field simulations

  • Hans-Joachim Bungartz
  • Florian Lindner
  • Miriam MehlEmail author
  • Benjamin Uekermann
Original Paper


For multi-field simulations involving a larger number of different physical fields and in cases where the involved fields or simulation codes change due to new modelling insights, e.g., flexible and robust partitioned coupling schemes are an important prerequisite to keep time-to-solution within reasonable limits. They allow for a fast, almost plug-and-play combination of existing established codes to the respective multi-field simulation environment. In this paper, we study a class of coupling approaches that we originally introduced in order to improve the parallel scalability of partitioned simulations. Due to the symmetric structure of these coupling methods and the use of ’long’ vectors of coupling data comprising the input and output of all involved codes at a time, they turn out to be particularly suited also for simulations involving more than two coupled fields. As standard two-field coupling schemes are not suited for such cases as shown in our numerical results, this allows the simulation of a new range of applications in a partitioned way.


Multi-field simulation Strong coupling Partitioned approach 



The financial support of the Institute for Advanced Study (IAS) of the Technische Universität München, and of SPPEXA, the German Science Foundation Priority Programme 1648—Software for Exascale Computing are thankfully acknowledged. Alya is developed at the Barcelona Supercomuting Center, by Guillaume Houzeaux, Mariano Vázquez, et al. We want to thank, in particular, Juan Carlos Cajas, who helped to implement the preCICE adapter in Alya.


  1. 1.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, ChichesterCrossRefGoogle Scholar
  2. 2.
    Brummelen EHV (2009) Added mass effects of compressible and incompressible flows in fluid-structure interaction. J Appl Mech 76(2):021206. doi: 10.1115/1.3059565 CrossRefGoogle Scholar
  3. 3.
    Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Rapport de recherche, INRIAGoogle Scholar
  4. 4.
    Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struc 87(11):793–801. doi: 10.1016/j.compstruc.2008.11.013 CrossRefGoogle Scholar
  5. 5.
    Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182(3):499–515zbMATHCrossRefGoogle Scholar
  6. 6.
    Gatzhammer B (2014) Efficient and flexible partitioned simulation of fluid-structure interactions. Ph.D. thesis, Technische Universität München, Institut für InformatikGoogle Scholar
  7. 7.
    Graczyk M, Moan T (2008) A probabilistic assessment of design sloshing pressure time histories in LNG tanks. Ocean Eng 35(8):834–855CrossRefGoogle Scholar
  8. 8.
    Haelterman R, Degroote J, Heule DV, Vierendeels J (2009) The quasi-Newton least squares method: A new and fast secant method analyzed for linear systems. SIAM J Numer Anal 47(3):2347–2368zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Houzeaux G, Vázquez M, Aubry R, Cela J (2009) A massively parallel fractional step solver for incompressible flows. J Comput Phys 228(17):6316–6332zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Küttler U, Wall WA (2008) Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72. doi: 10.1007/s00466-008-0255-5 zbMATHCrossRefGoogle Scholar
  11. 11.
    Lafortune P, Aris R, Vázquez M, Houzeaux G (2012) Coupled electromechanical model of the heart: parallel finite element formulation. Int J Numer Methods Biomed Eng 28(1):72–86zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Link G, Kaltenbacher M, Breuer M, Döllinger M (2009) A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation. Comput Methods Appl Mech Eng 198(41):3321–3334. doi: 10.1016/j.cma.2009.06.009 zbMATHCrossRefGoogle Scholar
  13. 13.
    Mehl M, Uekermann B, Bijl H, Blom D, Gatzhammer B, Zuijlen AV (2013) Parallel coupling numercis for partitioned fluid-structure interaction simulations. Submitted to SIAM SISCGoogle Scholar
  14. 14.
    Michler C (2004) An interface Newton-Krylov solver for fluid-structure interaction. Int J Numer Methods Fluids 47(10–11):1189–1195Google Scholar
  15. 15.
    Minami S, Yoshimura S (2010) Performance evaluation of nonlinear algorithms with line-search for partitioned coupling techniques for fluid-structure interactions. Int J Numer Methods Fluids 64(10–12):1129–1147zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Sicklinger S, Belsky V, Engelmann B, Elmqvist H, Olsson H, Wüchner R, Bletzinger KU (2014) Interface Jacobian-based o-Simulation. Int J Numer Methods Eng 98(6):418–444Google Scholar
  17. 17.
    Uekermann B, Bungartz HJ, Gatzhammer B, Mehl M (2013) A parallel, black-box coupling algorithm for fluid-structure interaction. In: Proceedings of ECCOMAS Coupled Problems, IbizaGoogle Scholar
  18. 18.
    Uekermann B, Cajas JC, Gatzhammer B, Houzeaux G, Mehl M, Vázquez M (2014) Towards partitioned fluid-structure interaction on massively parallel systems. In: Proceedings of WCCM XI/ ECCM V/ ECFD VI, BarcelonaGoogle Scholar
  19. 19.
    Vierendeels J, Lanoye L, Degroote J, Verdonck P (2007) Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. Comput Struc 85(11):970–976. doi: 10.1016/j.compstruc.2006.11.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hans-Joachim Bungartz
    • 1
  • Florian Lindner
    • 2
  • Miriam Mehl
    • 2
    Email author
  • Benjamin Uekermann
    • 1
  1. 1.Department of Computer ScienceTechnische Universität MünchenGarchingGermany
  2. 2.Institute for Parallel and Distributed SystemsUniversität StuttgartStuttgartGermany

Personalised recommendations