Computational Mechanics

, Volume 55, Issue 2, pp 383–405 | Cite as

A review on phase-field models of brittle fracture and a new fast hybrid formulation

  • Marreddy Ambati
  • Tymofiy Gerasimov
  • Laura De Lorenzis
Original Paper


In this contribution we address the issue of efficient finite element treatment for phase-field modeling of brittle fracture. We start by providing an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities. Within the formulations stemming from Griffith’s theory, we focus on quasi-static models featuring a tension-compression split, which prevent cracking in compression and interpenetration of the crack faces upon closure, and on the staggered algorithmic implementation due to its proved robustness. In this paper, we establish an appropriate stopping criterion for the staggered scheme. Moreover, we propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem. This enables a significant reduction of computational cost—about one order of magnitude—with respect to the available (non-linear) models. The conceptual and structural similarities of the hybrid formulation to gradient-enhanced continuum damage mechanics are outlined as well. Several benchmark problems are solved, including one with own experimental verification.


Phase-field modeling Brittle fracture Review  Hybrid formulation Staggered scheme  FEM 



This research was funded by the European Research Council, ERC Starting Researcher Grant INTERFACES, Grant Agreement No. 279439. The assistance of Dr. Roland Kruse (Institute of Applied Mechanics, TU Braunschweig) with the experimental tests for example 6 in Sect. 4 is gratefully acknowledged.


  1. 1.
    Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282CrossRefMATHGoogle Scholar
  3. 3.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefMATHGoogle Scholar
  4. 4.
    Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85:118–121CrossRefGoogle Scholar
  5. 5.
    Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501CrossRefGoogle Scholar
  6. 6.
    Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368CrossRefMATHGoogle Scholar
  7. 7.
    Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95CrossRefGoogle Scholar
  8. 8.
    Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen CS, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev E 71:036117CrossRefGoogle Scholar
  9. 9.
    Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105504CrossRefGoogle Scholar
  10. 10.
    Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kuhn C, Müller R (2008) A phase field model for fracture. Proc Appl Math Mech 8:10223–10224CrossRefGoogle Scholar
  13. 13.
    Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRefGoogle Scholar
  14. 14.
    Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229CrossRefMATHGoogle Scholar
  15. 15.
    Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, OxfordGoogle Scholar
  19. 19.
    Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20:1021–1048CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143CrossRefMATHGoogle Scholar
  22. 22.
    Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217—-220:77–95CrossRefMathSciNetGoogle Scholar
  23. 23.
    Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129CrossRefGoogle Scholar
  24. 24.
    Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276–301CrossRefMathSciNetGoogle Scholar
  25. 25.
    Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92(3–4):178–192CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATHGoogle Scholar
  28. 28.
    Kachanov LM (1986) Introduction to continuum damage mechanics. Springer, NetherlandsCrossRefMATHGoogle Scholar
  29. 29.
    Murakami S (2012) Continuum damage mechanics. Springer Science and Business Media, NetherlandsCrossRefGoogle Scholar
  30. 30.
    Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models: I. Formulation. Int J Solids Struct 23:821–840CrossRefMATHGoogle Scholar
  31. 31.
    Mazars J (1986) A description of micro- and macro-scale damage of concrete structures. J Eng Fract Mech 25:729–737CrossRefGoogle Scholar
  32. 32.
    de Vree JHP, Brekelmans WAM, Gils MAJ (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55:581–588CrossRefMATHGoogle Scholar
  33. 33.
    Pijaudier-Cabot G, Baz̆ant ZP (1987) Nonlocal damage theory. J Eng Mech 118:1512–1533Google Scholar
  34. 34.
    Baz̆ant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. ASME J Appl Mech 55:287–293CrossRefGoogle Scholar
  35. 35.
    Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory: application to concrete. ASCE J Eng Mech 115:345–365CrossRefGoogle Scholar
  36. 36.
    Pijaudier-Cabot G, Huerta A (1991) Finite element analysis of bifurcation in nonlocal strain softening solids. Comput Methods Appl Mech Eng 90:905–919CrossRefGoogle Scholar
  37. 37.
    Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62CrossRefGoogle Scholar
  38. 38.
    Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48:980–1012CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Winkler B (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton, Dissertation. University of Innsbruck, AustriaGoogle Scholar
  40. 40.
    Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2d LEFM problems. Eng Fract Mech 55:321–334CrossRefGoogle Scholar
  41. 41.
    Saxena A, Hudak SJ (1987) Review and extension of compliance information for common crack growth specimens. Int J Fract 14:453–468CrossRefGoogle Scholar
  42. 42.
    Watanabe T (2011) Analytical research on method for applying interfacial fracture mechanics to evaluate strength of cementitious adhesive interfaces for thin structural finish details. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry, pp 67–82, ISBN: 978-953-307-351-4Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marreddy Ambati
    • 1
  • Tymofiy Gerasimov
    • 1
  • Laura De Lorenzis
    • 1
  1. 1.Institute of Applied MechanicsTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations