Computational Mechanics

, Volume 55, Issue 6, pp 1091–1104 | Cite as

A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh

Original Paper

Abstract

This paper describes a strategy to solve multi-fluid and fluid–structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2–2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.

Keywords

Multi-fluids FSI Fixed mesh Lagrangian particles Unified approach 

References

  1. 1.
    Ausas RF, Buscaglia GC, Idelsohn SR (2012) A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int J Numer Method Fluids 70(7):829–850MathSciNetCrossRefGoogle Scholar
  2. 2.
    Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New YorkMATHGoogle Scholar
  3. 3.
    Brumley DR, Willcox M, Sader JE (2010) Oscillation of cylinders of rectangular cross section immersed in fluid. Phys Fluids 22(5):052,001 (1994-present)CrossRefGoogle Scholar
  4. 4.
    Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Method Appl Mech 190(13):1579–1599MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Codina R, Badia S (2006) On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput Method Appl Mech 195(23):2900–2918MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Coppola H (2009) A finite element model for free surface and two fluid flows on fixed meshes. Ph.D. thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  7. 7.
    Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Method Eng 17(3):253–297MATHCrossRefGoogle Scholar
  8. 8.
    DeBlois BM (1997) Linearizing convection terms in the Navier–Stokes equations. Comput Method Appl Mech 143(3):289–297MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Donea J, Huerta H (2003) Finite element methods for flow problems. Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Felippa CA (2004) Introduction to finite element methods. University of Colorado, Boulder. http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d
  11. 11.
    Guermond JL, Quartapelle L (2000) A projection fem for variable density incompressible flows. J Comput Phys 165(1):167–188MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    He X, Chen S, Zhang R (1999) A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability. J Comput Phys 152(2):642–663MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Idelsohn S, Nigro N, Gimenez J, Rossi R, Marti J (2013) A fast and accurate method to solve the incompressible Navier–Stokes equations. Eng Comput 30(2):2–2Google Scholar
  14. 14.
    Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods FluidsGoogle Scholar
  15. 15.
    Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the pfem. Comput Methods Appl Mech 197(19):1762–1776MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J Numer Methods Fluids 74(10):699–731CrossRefGoogle Scholar
  17. 17.
    Oñate E, Franci A, Carbonell JM (2014) A particle finite element method for analysis of industrial forming processes. Comput Mech 54:1–23CrossRefGoogle Scholar
  18. 18.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MATHMathSciNetGoogle Scholar
  19. 19.
    Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Van Eysden CA, Sader JE (2006) Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J Appl Phys 100(11):114,916CrossRefGoogle Scholar
  21. 21.
    Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Zienkiewicz O, Taylor R, Zhu JZ (2006) The finite element method: its basic and fundamentals, vol 1, 6th edn. Elsevier, New YorkGoogle Scholar

Copyright information

© European Union  2015

Authors and Affiliations

  1. 1.Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.Departament de Resistència de Materials i Estructures a l’Engenyeria (RMEE)Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Universitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations