Computational Mechanics

, Volume 55, Issue 2, pp 327–344 | Cite as

An integrated method for the transient solution of reduced order models of geometrically nonlinear structures

  • Fritz Adrian Lülf
  • Duc-Minh Tran
  • Hermann G. Matthies
  • Roger Ohayon
Original Paper

Abstract

For repeated transient solutions of geometrically nonlinear structures, the numerical effort often poses a major obstacle. Thus it may become necessary to introduce a reduced order model which accelerates the calculations considerably while taking into account the nonlinear effects of the full order model in order to maintain accuracy. This work yields an integrated method that allows for rapid, accurate and parameterisable transient solutions. It is applicable if the structure is discretised in time and in space and its dynamic equilibrium described by a matrix equation. The projection on a reduced basis is introduced to obtain the reduced order model. Three approaches, each responding to one of the requirements of rapidity, accuracy and parameterisation, are united to form the integrated method. The polynomial formulation of the nonlinear terms renders the solution of the reduced order model autonomous from the finite element formulation and ensures a rapid solution. The update and augmentation of the reduced basis ensures the accuracy, because the simple introduction of a constant basis seems to be insufficient to account for the nonlinear behaviour. The interpolation of the reduced basis allows adapting the reduced order model to different external parameters. A Newmark-type algorithm provides the backbone of the integrated method. The application of the integrated method on test-cases with geometrically nonlinear finite elements confirms that this method enables a rapid, accurate and parameterisable transient solution.

Keywords

Structural dynamics Geometric nonlinearities Model reduction Reduced bases Normal modes Tangent modes Basis update Parameters 

References

  1. 1.
    Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, New YorkCrossRefMATHGoogle Scholar
  2. 2.
    Amsallem D, Cortial J, Carlberg K, Farhat C (2009) A method for interpolating on manifolds structural dynamics reduced-order models. Int J Numer Methods Eng 80:1241–1258CrossRefMATHGoogle Scholar
  3. 3.
    Amsallem D, Farhat C (2008) Interpolation method for the adaptation of reduced-order models to parameter changes and its application to aeroelasticity. AIAA J 46:1803–1813CrossRefGoogle Scholar
  4. 4.
    Argyris JH, Mlejnek HP (1991) Dynamics of structures. North Holland, New YorkMATHGoogle Scholar
  5. 5.
    Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood CliffsGoogle Scholar
  6. 6.
    Besselink B, Tabak U, Lutowska A, van de Wouw N, Nijmeijer H, Rixen D, Hochstenbach M, Schilders W (2013) A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J Sound Vib 332(19):4403–4422. doi:10.1016/j.jsv.2013.03.025 CrossRefGoogle Scholar
  7. 7.
    Bui-Thanh T, Willcox K, Ghattas O, van Bloemen Waanders B (2007) Goal-oriented, model-constrained optimization for reduction of large-scale systems. J Comput Phys 224(2):880–896. doi:10.1016/j.jcp.2006.10.026 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chang YW, Wang X, Capiez-Lernout E, Mignolet MP, Soize C (2011) Reduced order modeling for the nonlinear geometric response of some curved structures. In: International forum of aeroelasticity & structural dynamics (IFASD), ParisGoogle Scholar
  9. 9.
    Ewins DJ (2000) Modal testing, theory, practice and application, 2nd edn. Research Study Press LTD, BaldockGoogle Scholar
  10. 10.
    Feeny BF, Liang Y (2003) Interpreting proper orthogonal modes of randomly excited vibration systems. J Sound Vib 265(5):953–966. doi:10.1016/S0022-460X(02)01265-8 CrossRefGoogle Scholar
  11. 11.
    Galbally D, Fidkowski K, Willcox K, Ghattas O (2010) Non-linear model reduction for uncertainty quantification in large-scale inverse problems. Int J Numer Methods Eng 81(12):1581–1608. doi:10.1002/nme.2746 MATHMathSciNetGoogle Scholar
  12. 12.
    Grolet A, Thouverez F (2012) On the use of the proper generalised decomposition for solving nonlinear vibration problems. In: ASME 2012 international mechanical engineering congress & exposition, IMECE, HoustonGoogle Scholar
  13. 13.
    Hackbusch W (2012) Tensor spaces and numerical tensor calculus. Springer, HeidelbergCrossRefMATHGoogle Scholar
  14. 14.
    Hadigol M, Doostan A, Matthies HG, Niekamp R (2013) Partitioned treatment of uncertainty in coupled domain problems: a separated representation approach. http://arxiv.org/abs/1305.6818v1. Retrieved 8 Nov 2013
  15. 15.
    Har J, Tamma KK (2012) Advances in computational dynamics. Wiley, New YorkMATHGoogle Scholar
  16. 16.
    Hay A, Borggaard J, Akhtar I, Pelletier D (2010) Reduced-order models for parameter dependent geometries based on shape sensitivity analysis. J Comput Phys 229(4):1327–1352. doi:10.1016/j.jcp.2009.10.033 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hay A, Borggaard JT, Pelletier D (2009) Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. J Fluid Mech 629:41–72CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hemez FM, Doebling SW (2001) Review and assessment of model updating for non-linear, transient dynamics. Mech Syst Signal Process 15(1):45–74. doi:10.1006/mssp.2000.1351 CrossRefGoogle Scholar
  19. 19.
    Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292CrossRefGoogle Scholar
  20. 20.
    Hollkamp JJ, Gordon RW, Spottswood SM (2005) Nonlinear modal models for sonic fatigue response prediction: a comparison of methods. J Sound Vib 284(3–5):1145–1163. doi:10.1016/j.jsv.2004.08.036 CrossRefGoogle Scholar
  21. 21.
    Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, ChichesterGoogle Scholar
  22. 22.
    Idelsohn SR, Cardona A (1985) A load-dependent basis for reduced nonlinear structural dynamics. Comput Struct 20(1–3):203–210. doi:10.1016/0045-7949(85)90069-0 CrossRefMATHGoogle Scholar
  23. 23.
    Krenk S (2009) Non-linear modeling and analysis of solids and structures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. 24.
    Lülf FA, Tran DM, Ohayon R (2013) Reduced bases for nonlinear structural dynamic systems: a comparative study. J Sound Vib 332:3897–3921CrossRefGoogle Scholar
  25. 25.
    Matthies HG, Strang G (1979) The solution of nonlinear finite element equations. Int J Numer Methods Eng 14:1613–1626CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Mignolet MP, Przekop A, Rizzi SA, Spottswood SM (2013) A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J Sound Vib 332(10):2437–2460. doi:10.1016/j.jsv.2012.10.017 CrossRefGoogle Scholar
  27. 27.
    Mignolet MP, Soize C (2008) Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Comput Methods Appl Mech Eng 197:3951–3963. doi:10.1016/j.cma.2008.03.032 CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Muravyov AA, Rizzi SA (2003) Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comput Struct 81(15):1513–1523. doi:10.1016/S0045-7949(03)00145-7 CrossRefGoogle Scholar
  29. 29.
    Newmark NM (1962) A method of computation for structural dynamics. Trans Am Soc Civ Eng 127(1):1406–1432Google Scholar
  30. 30.
    Nickell R (1976) Nonlinear dynamics by mode superposition. Comput Methods Appl Mechanics Eng 7(1):107–129. doi:10.1016/0045-7825(76)90008-6 CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Noor AK (1981) Recent advances in reduction methods for nonlinear problems. Comput Struct 13(1–3):31–44. doi:10.1016/0045-7949(81)90106-1 CrossRefMATHGoogle Scholar
  32. 32.
    Phillips JR (2003) Projection-based approaches for model reduction of weakly nonlinear, time-varying systems. IEEE Trans Comput Aided Des Integr Circuits Syst 22(2):171–187CrossRefGoogle Scholar
  33. 33.
    Reichel L (1985) On polynomial approximation in the complex plane with application to conformal mapping. Math Comput 44:425–433CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Späth H (1995) Two dimensional spline interpolation algorithms. A.K. Peters, Ltd., WellesleyMATHGoogle Scholar
  35. 35.
    Spottswood S, Allemang R (2006) Identification of nonlinear parameters for reduced order models. J Sound Vib 295(1–2):226–245. doi:10.1016/j.jsv.2006.01.009
  36. 36.
    Strang G (2006) Linear algebra and its applications, 2nd edn. Thomson, BelmontGoogle Scholar
  37. 37.
    Tran DM (2009) Component mode synthesis methods using partial interface modes: application to tuned and mistuned structures with cyclic symmetry. Comput Struct 87:1141–1153CrossRefGoogle Scholar
  38. 38.
    Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATHGoogle Scholar
  39. 39.
    Zienkiewicz O, Taylor R, Zhu J (2005) The finite element method: its basis and fundamentals. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fritz Adrian Lülf
    • 1
    • 2
  • Duc-Minh Tran
    • 1
  • Hermann G. Matthies
    • 3
  • Roger Ohayon
    • 3
    • 4
  1. 1.ONERA, The French Aerospace LabChâtillonFrance
  2. 2.Institute of Continuum MechanicsLeibniz Universität HannoverHannoverGermany
  3. 3.Institut für Wissenschaftliches RechnenTechnische Universität BraunschweigBraunschweigGermany
  4. 4.Structural Mechanics and Coupled Systems LaboratoryConservatoire National des Arts et MétiersParisFrance

Personalised recommendations