Computational Mechanics

, Volume 55, Issue 1, pp 127–144 | Cite as

On efficient and reliable stochastic generation of RVEs for analysis of composites within the framework of homogenization

  • Vladimir Salnikov
  • Daniel Choï
  • Philippe Karamian-Surville
Original Paper

Abstract

In this paper we describe efficient methods of generation of representative volume elements (RVEs) suitable for producing the samples for analysis of effective properties of composite materials via and for stochastic homogenization. We are interested in composites reinforced by a mixture of spherical and cylindrical inclusions. For these geometries we give explicit conditions of intersection in a convenient form for verification. Based on those conditions we present two methods to generate RVEs: one is based on the random sequential adsorption scheme, the other one on the time driven molecular dynamics. We test the efficiency of these methods and show that the first one is extremely powerful for low volume fraction of inclusions, while the second one allows us to construct denser configurations. All the algorithms are given explicitly so they can be implemented directly.

Keywords

Representative volume element generation Composite materials Cylinders and spheres Random sequential adsorption Molecular dynamics Stochastic homogenization 

References

  1. 1.
    Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50:2107–2121CrossRefMATHGoogle Scholar
  2. 2.
    Ghossein E, Lévesque M (2012) A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites. Int J Solids Struct 49:1387–1398CrossRefGoogle Scholar
  3. 3.
    Man W, Donev A, Stillinger F, Sullivan M, Russel W, Heeger D, Inati S, Torquato S, Chaikin P (2005) Experiments on random packings of ellipsoids. Phys Rev Lett 94:198001CrossRefGoogle Scholar
  4. 4.
    Bezrukov A, Stoyan D (2006) Simulation and statistical analysis of random packings of ellipsoids. Part Part Syst Charact 23:388–398CrossRefGoogle Scholar
  5. 5.
    Ghossein E, Lévesque M (2013) Random generation of periodic hard ellipsoids based on molecular dynamics: a computationally-efficient algorithm. J Comput Phys 253:471–490CrossRefMathSciNetGoogle Scholar
  6. 6.
    Williams S, Philipse A (2003) Random packings of spheres and spherocylinders simulated by mechanical contraction. Phys Rev E 67:051301CrossRefGoogle Scholar
  7. 7.
    Zhao J, Li S, Zou R, Yu A (2012) Dense random packings of spherocylinders. Soft Matter 8:10031009Google Scholar
  8. 8.
    Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44:3888CrossRefGoogle Scholar
  9. 9.
    Rintoul MD, Torquato S (1997) Reconstruction of the structure of dispersions. J Colloid Interface Sci 186:467–476CrossRefGoogle Scholar
  10. 10.
    Lubachevsky BD, Stillinger FH (1990) Geometric properties of random disk packings. J Stat Phys 60(5):561–583CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50:2107–2121Google Scholar
  12. 12.
    Metropolis N, Ulam S (1949) The monte carlo method. J Am Stat Assoc 44(247):335–341CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Arnold VI (1989) Mathematical methods of classical mechanics, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  15. 15.
    Nosé S (1991) Constant temperature molecular dynamics methods. Prog Theor Phys Suppl 103:1–46CrossRefGoogle Scholar
  16. 16.
    Hoover WG (2001) Time reversibility computer simulations and chaos. World Scientific, SingaporeGoogle Scholar
  17. 17.
    Golo VL, Shaitan KV (2002) Dynamical attractors in the Berendsen thermostat and slow dynamics of macromolecules. Biofizika 47:611Google Scholar
  18. 18.
    Golo VL, Shaitan KV. Nonlinear Regimes in Thermostats of Berendsen’s Type, Preprint: cond-mat/0112477
  19. 19.
    Golo VL, Salnikov VlN, Shaitan KV (2004) Harmonic oscillators in the Nosé-Hoover environment. Phys Rev E 70:046130CrossRefGoogle Scholar
  20. 20.
    Michel JC, Moulinec H, Suquet P (2001) A computational scheme for linear and non-linear composites with arbitrary phasecontrast. Int J Numer Methods Eng 52:139160. doi:10.1002/nme.275 CrossRefGoogle Scholar
  21. 21.
    Monchiet V, Bonnet G (2011) A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. Int J Numer Methods Eng 89:1419–1436CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lagrange G (1950) Analytical Mechanics. “GTTI”Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vladimir Salnikov
    • 1
  • Daniel Choï
    • 1
  • Philippe Karamian-Surville
    • 1
  1. 1.Nicolas Oresme Mathematics LaboratoryUniversity of Caen Lower NormandyCaen CedexFrance

Personalised recommendations