Advertisement

Computational Mechanics

, Volume 55, Issue 1, pp 27–35 | Cite as

Small strain elasto-plastic multiphase-field model

  • Daniel SchneiderEmail author
  • Stefan Schmid
  • Michael Selzer
  • Thomas Böhlke
  • Britta Nestler
Original Paper

Abstract

A small strain plasticity model, based on the principles of continuum mechanics, is incorporated into a phase-field model for heterogeneous microstructures in polycrystalline and multiphase material systems (Nestler et al., Phys Rev 71:1–6, 2005). Thereby, the displacement field is computed by solving the local momentum balance dynamically (Spatschek et al., Phys Rev 75:1–14, 2007) using the finite difference method on a staggered grid. The elastic contribution is expressed as the linear approximation according to the Cauchy stress tensor. In order to calculate the plastic strain, the Prandtl–Reuss model is implemented consisting of an associated flow rule in combination with the von Mises yield criterion and a linear isotropic hardening approximation. Simulations are performed illustrating the evolution of the stress and plastic strain using a radial return mapping algorithm for single phase system and two phase microstructures. As an example for interface evolution coupling with elasto-plastic effects, we present crack propagation simulations in ductile material.

Keywords

Phase-field Multiphase-field  Elasto-plasticity Crack propagation 

Notes

Acknowledgments

We thank the DFG for funding our investigations in the framework of the Research Training Group 1483. The work was further supported by the state Baden-Wuerttemberg and European Fonds for regional development with a center of excellence in Computational Materials Science and Engineering and by Helmholtz Portfolio topic ”Materials Science for Energy and its Applications in Thin Film Photovoltaics and in Energy Efficiency”.

References

  1. 1.
    Ammar K, Appolaire B, Cailletaud G, Forest S (2009) Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Revue européenne de mécanique numérique 18(5–6):485–523. doi: 10.3166/ejcm.18.485-523 CrossRefzbMATHGoogle Scholar
  2. 2.
    Apel M, Benke S, Steinbach I (2009) Virtual dilatometer curves and effective Youngs modulus of a 3D multiphase structure calculated by the phase-field method. Comput Mater Sci 45(3):589–592. doi: 10.1016/j.commatsci.2008.07.007 CrossRefGoogle Scholar
  3. 3.
    Bauschinger J (1886) Über die Veränderung der Elastizitätsgrenze und die Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwärmen und Abkühlen und durch oftmals wiederholte Beanspruchungen. Mitth 13.Google Scholar
  4. 4.
    Chen LQ (2002) Phase-field models for microstructure evolution. Ann Rev Mater Res 32(1):113–140. doi: 10.1146/annurev.matsci.32.112001.132041 CrossRefGoogle Scholar
  5. 5.
    Eshelby JD (1957) The determination of the elastic filed of an ellipsoidal inclusion, and related problems. Proc R Soc 241(1226):376–396CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Fabrizio M (2012) Plasticity, internal structure and phase field model. Mech Res Commun 43:29–33. doi: 10.1016/j.mechrescom.2012.04.001 CrossRefGoogle Scholar
  7. 7.
    Gross D, Seelig T (2011) Bruchmechanik: mit einer Einführung in die Mikromechanik. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Guo XH, Shi SQ, Ma XQ (2005) Elastoplastic phase field model for microstructure evolution. Appl Phys Lett 87(22):221,910. doi: 10.1063/1.2138358
  9. 9.
    Khachaturyan AG, Wang YU, Jin YM, Cuitin AM (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49:1847–1857CrossRefGoogle Scholar
  10. 10.
    Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71(4):1–6. doi: 10.1103/PhysRevE.71.041609 CrossRefGoogle Scholar
  11. 11.
    Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizittitsbedingung fiir Einkristalle. Z Angew Math Mech 9:49–58CrossRefzbMATHGoogle Scholar
  12. 12.
    Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater 58(4):1152–1211. doi: 10.1016/j.actamat.2009.10.058 CrossRefGoogle Scholar
  13. 13.
    Schmauder S (2003) DFG Forschungsbericht: Mikromechanisches Verständnis des Verformungsverhaltens von ferritischen Gusseisen mit unterschiedlicher Graphitmorphologie. Tech. Rep. 2003, Universität Stuttgart.Google Scholar
  14. 14.
    Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkzbMATHGoogle Scholar
  15. 15.
    Spatschek R, Müller-Gugenberger C, Brener E, Nestler B (2007) Phase field modeling of fracture and stress-induced phase transitions. Phys Rev E 75(6):1–14. doi: 10.1103/PhysRevE.75.066111 CrossRefGoogle Scholar
  16. 16.
    Steinbach I, Apel M (2006) Multi phase field model for solid state transformation with elastic strain. Phys D 217:153–160. doi: 10.1016/j.physd.2006.04.001 CrossRefzbMATHGoogle Scholar
  17. 17.
    Ulmer H, Hofacker M, Miehe C (2013) Phase field modeling of brittle and ductile fracture. PAMM 13(1):533–536CrossRefGoogle Scholar
  18. 18.
    Voigt W (1889) Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Annalen der Physik 274(12):573–587CrossRefGoogle Scholar
  19. 19.
    Nestler B, Reichardt M, Selzer M (2008) Massive multi-phase-field simulations: methods to compute large grain systems. Proceedings of the 11th international conference on aluminium alloys. pp 1251–1255Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Schneider
    • 1
    Email author
  • Stefan Schmid
    • 1
  • Michael Selzer
    • 1
    • 2
  • Thomas Böhlke
    • 3
  • Britta Nestler
    • 1
    • 2
  1. 1.Institute of Materials and ProcessesKarlsruhe University of Applied ScienceKarlsruheGermany
  2. 2.Institute of Applied Materials (IAM)Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute of Engineering Mechanics, Chair for Continuum MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations