Computational Mechanics

, Volume 54, Issue 6, pp 1569–1581 | Cite as

A consistent interface element formulation for geometrical and material nonlinearities

Original Paper

Abstract

Decohesion undergoing large displacements takes place in a wide range of applications. In these problems, interface element formulations for large displacements should be used to accurately deal with coupled material and geometrical nonlinearities. The present work proposes a consistent derivation of a new interface element for large deformation analyses. The resulting compact derivation leads to an operational formulation that enables the accommodation of any order of kinematic interpolation and constitutive behavior of the interface. The derived interface element has been implemented into the finite element codes FEAP and ABAQUS by means of user-defined routines. The interplay between geometrical and material nonlinearities is investigated by considering two different constitutive models for the interface (tension cut-off and polynomial cohesive zone models) and small or finite deformation for the continuum. Numerical examples are proposed to assess the mesh independency of the new interface element and to demonstrate the robustness of the formulation. A comparison with experimental results for peeling confirms the predictive capabilities of the formulation.

Keywords

Nonlinear fracture mechanics Interface element Cohesive zone model Large displacements 

References

  1. 1.
    Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129CrossRefMathSciNetGoogle Scholar
  2. 2.
    Elices M, Guinea G, Gómez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69:137–63CrossRefGoogle Scholar
  3. 3.
    Carpinteri A, Paggi M (2012) Modelling strain localization by cohesive/overlapping zones in tension/compression: brittleness size effects and scaling in material properties. Z Angew Math Mech 92:829–840CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Paggi M, Carpinteri A, Wriggers P (2012) Special issue on computational methods for interface mechanical problems. Comput Mech 50:269–271CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ngu D, Park K, Paulino G, Huang Y (2010) On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface traction. Eng Fract Mech 77:1153–1174CrossRefGoogle Scholar
  6. 6.
    Hillerborg A (1990) Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams. Eng Fract Mech 35:233–240CrossRefGoogle Scholar
  7. 7.
    Carpinteri A (1989) Post-peak and post-bifurcation analysis on cohesive crack propagation. Eng Fract Mech 32:265–278CrossRefGoogle Scholar
  8. 8.
    Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solids 37:567–582CrossRefMATHGoogle Scholar
  9. 9.
    Carpinteri A (1989) Softening and snap-back instability in cohesive solids. Int J Numer Methods Eng 28:1521–1537CrossRefGoogle Scholar
  10. 10.
    Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int J Fract 77:111–140CrossRefGoogle Scholar
  11. 11.
    Turon A, Camanho PP, Costa J, Dávila CG (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089CrossRefGoogle Scholar
  12. 12.
    Reinoso J, Blázquez A, Estefani A, París F, Cañas J, Arévalo E, Cruz F (2012) Experimental and three-dimensional global-local finite element analysis of a composite component including degradation process at the interfaces. Composites B 43:1929–1942Google Scholar
  13. 13.
    Hattiangadi A, Siegmund T (2004) A thermomechanical cohesive zone model for bridged delamination cracks. J Mech Phys Solids 52:533–566CrossRefMATHGoogle Scholar
  14. 14.
    Ozdemir I, Brekelmans WAM, Geers MGD (2010) A thermo-mechanical cohesive zone model. Comput Mech 26:735–745CrossRefGoogle Scholar
  15. 15.
    Sapora A, Paggi M (2013) A coupled cohesive zone model for transient analysis of thermoelastic interface debonding. Comput Mech 53:845–857CrossRefMathSciNetGoogle Scholar
  16. 16.
    Paggi M, Wriggers P (2011) A nonlocal cohesive zone model for finite thickness interfaces, Part I: mathematical formulation and validation with molecular dynamics. Comput Mater Sci 50:1625–1633CrossRefGoogle Scholar
  17. 17.
    van den Bosch MJ, Schreurs PJG, Geers MGD (2008) Identification and characterization of delamination in polymer coated metal sheet. J Mech Phys Solids 56:3259–3276CrossRefGoogle Scholar
  18. 18.
    Paggi M, Lehmann E, Weber C, Carpinteri A, Wriggers P, Schaper M (2013) A numerical investigation of the interplay between cohesive cracking and plasticity in polycrystalline materials. Comput Mater Sci 77:81–92CrossRefGoogle Scholar
  19. 19.
    Carpinteri A, Paggi M, Zavarise G (2008) The effect of contact on the decohesion of laminated beams with multiple microcracks. Int J Solids Struct 45:129–143CrossRefMATHGoogle Scholar
  20. 20.
    Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Num Methods Eng 68:542–582Google Scholar
  21. 21.
    Parrinello F, Failla B, Borino G (2009) Cohesivefrictional interface constitutive model. Int J Solids Struct 46:2680–2692CrossRefMATHGoogle Scholar
  22. 22.
    Paggi M, Wriggers P (2012) Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces. J Mech Phys Solids 60:557–572CrossRefGoogle Scholar
  23. 23.
    Yao H, Gao H (2007) Multi-scale cohesive laws in hierarchical materials. Int J Solid Struct 44:8177–8193CrossRefMATHGoogle Scholar
  24. 24.
    Schellekens J, de Borst R (1993) On the numerical integration of interface elements. Int J Numer Methods Eng 36:44–66CrossRefGoogle Scholar
  25. 25.
    Pande GN, Sharma KG (1979) On joint/interface elements and associated problems of numerical ill-conditioning. Int J Numer Anal Methods Geomech 3:293–300CrossRefGoogle Scholar
  26. 26.
    Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736CrossRefMATHGoogle Scholar
  27. 27.
    de Borst R (2003) Numerical aspects of cohesive-zone models. Eng Fract Mech 70:1743–1757CrossRefGoogle Scholar
  28. 28.
    Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77CrossRefMATHGoogle Scholar
  29. 29.
    Ortiz M, Pandolfi A (1999) Finite deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282CrossRefMATHGoogle Scholar
  30. 30.
    Roychowdhury S, Arun Roy Y (2002) Ductile tearing in thin aluminium panels: experiments and analyses using large-displacement 3-D surface cohesive elements. Eng Fract Mech 69:983–1002CrossRefGoogle Scholar
  31. 31.
    Qiu Y, Crisfield MA, Alfano G (2001) An interface element formulation for the simulation of delamination with buckling. Eng Frac Mech 68:1755–1776CrossRefGoogle Scholar
  32. 32.
    van den Bosch MJ, Schreurs PJG, Geers MGD (2007) A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation. Eur J Mech A 26:1–19Google Scholar
  33. 33.
    van den Bosch MJ, Schreurs PJG, Geers MGD (2008) On the development of a 3D cohesive zone element in the presence of large deformations. Comput Mech 42:171–180CrossRefMATHGoogle Scholar
  34. 34.
    Fleischhauer R, Behnke R, Kaliske M (2013) A thermomechanical interface element formulation for finite deformations. Comput Mech 52:1039–1058CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn, vol I. Butterworth-Heinemann, Woburn.Google Scholar
  36. 36.
    Williams J, Hadavinia H (2002) Analytical solutions for cohesive zone models. J Mech Phys Solids 50:809–825CrossRefMATHGoogle Scholar
  37. 37.
    Tvergaard V (1990) Effect of fiber debonding in a whisker-reinforced metal. Mater Sci Eng A 107:23–40Google Scholar
  38. 38.
    Paggi M, Wriggers P (2011) A nonlocal cohesive zone model for finite thickness interfaces—part II: FE implementation and application to polycrystalline materials. Comput Mater Sci 50:1634–1643CrossRefGoogle Scholar
  39. 39.
    Rabinovitch O (2008) Debonding analysis of fiber-reinforced-polymer strengthened beams: cohesive zone modeling versus a linear elastic fracture mechanics approach. Eng Fract Mech 75:2842–2859CrossRefGoogle Scholar
  40. 40.
    Jorgensen GJ, Terwilliger KM, DelCueto JA, Glick SH, Kempe MD, Pankow JW, Pern FJ, McMahon TJ (2006) Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Sol Energy Mater Sol Cells 90:2739–2775CrossRefGoogle Scholar
  41. 41.
    Paggi M, Kajari-Schröder S, Eitner U (2011) Thermomechanical deformations in photovoltaic laminates. J Strain Anal Eng Des 46:772–782CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.IMT Institute for Advanced Studies LuccaLuccaItaly
  2. 2.Institute of Structural AnalysisLeibniz Universität HannoverHannoverGermany
  3. 3.Group of Elasticity and Strength of Materials, School of EngineeringUniversity of SevilleSevilleSpain

Personalised recommendations