Computational Mechanics

, Volume 54, Issue 6, pp 1431–1446 | Cite as

NURBS distance fields for extremely curved cracks

  • Ruben Sevilla
  • Ettore Barbieri
Original Paper


This paper proposes for the first time an intrinsic enrichment for extremely curved cracks in a meshfree framework. The unique property of the proposed method lies in the exact geometric representation of cracks using non-uniform rational B-splines (NURBS). A distance function algorithm for NURBS is presented, resulting in a spatial field which is simultaneously discontinuous over the (finite) curved crack and continuous all around the crack tips. Numerical examples show the potential of the proposed approach and illustrate its advantages with respect to other techniques usually employed to model fracture, including standard finite elements with remeshing and the extended finite element method. This work represents a further step in an ongoing effort in the community to integrate computer aided design with numerical simulations.


Cracks NURBS Enrichments Distance fields  Patterns 


  1. 1.
    Argon A (1959) Surface cracks on glass. Proc R Soc Lond A Math Phys Sci 250(1263):472–481CrossRefGoogle Scholar
  2. 2.
    Atluri S, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Barbieri E, Meo M (2012) A fast object-oriented Matlab implementation of the Reproducing Kernel Particle Method. Comput Mech 49(5):581–602CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Barbieri E, Petrinic N (2013) Multiple crack growth and coalescence in meshfree methods with a distance function-based enriched kernel. In: Key engineering materials—Advances in crack growth modeling, TransTech Publications, p 170Google Scholar
  5. 5.
    Barbieri E, Petrinic N (2014) Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Comput Mech 53(2):325–342CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Barbieri E, Petrinic N, Meo M, Tagarielli V (2012) A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity. Int J Numer Methods Eng 90(2):177–195CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Belytschko T, Gu L, Lu Y (1994a) Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng 2:519–534CrossRefGoogle Scholar
  8. 8.
    Belytschko T, Lu Y, Gu L (1994b) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Belytschko T, Lu Y, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315CrossRefGoogle Scholar
  10. 10.
    Brokenshire DR (1996) A study of torsion fracture tests. PhD thesis, Cardiff UniversityGoogle Scholar
  11. 11.
    Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1):195–227CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47(12):2039–2072CrossRefzbMATHGoogle Scholar
  13. 13.
    Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRefGoogle Scholar
  14. 14.
    Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12):1741–1760CrossRefzbMATHGoogle Scholar
  15. 15.
    Duarte CA, Oden JT (1996) Hp clouds-an hp meshless method. Numer methods Partial Differ Equ 12(6):673–706CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1257–1275CrossRefzbMATHGoogle Scholar
  17. 17.
    Fries T, Matthies H (2003) Classification and overview of meshfree methods. Brunswick, Institute of Scientific Computing, Technical University Braunschweig, Germany Informatikbericht Nr 3Google Scholar
  18. 18.
    Goehring L, Clegg WJ, Routh AF (2011) Wavy cracks in drying colloidal films. Soft Matter 7(18):7984–7987CrossRefGoogle Scholar
  19. 19.
    Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69(3):299–319CrossRefGoogle Scholar
  20. 20.
    Griebel M, Schweitzer MA (eds) (2008) Meshfree methods for partial differential equations IV. In: Lecture notes in computational science and engineering, vol 65. Springer, BerlinGoogle Scholar
  21. 21.
    Huerta A, Belytschko T, Fernández-Méndez S, Rabczuk T (2004) Meshfree methods. In: Encyclopedia of computational mechanics, Fundamentals, vol 1. Wiley, Chichester, pp 279–309Google Scholar
  22. 22.
    Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003) The meshless finite element method. Int J Numer Methods Eng 58(6):893–912CrossRefzbMATHGoogle Scholar
  23. 23.
    Inoue K, Kikuchi Y, Masuyama T (2005) A NURBS finite element method for product shape design. J Eng Design 16(2):157–174CrossRefGoogle Scholar
  24. 24.
    Lazarus V, Pauchard L (2011) From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7(6):2552–2559CrossRefGoogle Scholar
  25. 25.
    Legrain G (2013) A NURBS-enhanced extended finite element approach for unfitted CAD analysis. Comput Mech 52(4):913– 929Google Scholar
  26. 26.
    Leung KT, Jozsa L, Ravasz M, Neda Z (2001) Pattern formation: spiral cracks without twisting. Nature 410(6825):166–166CrossRefGoogle Scholar
  27. 27.
    Liu WK, Jun S, Li S, Adee J, Belytschko T (1995a) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Liu WK, Jun S, Zhang YI (1995b) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat commun 5:3166CrossRefGoogle Scholar
  30. 30.
    Nam KH, Park IH, Ko SH (2012) Patterning by controlled cracking. Nature 485(7397):221–224CrossRefGoogle Scholar
  31. 31.
    Narendran V, Cleary MP (1984) Elastostatic interaction of multiple arbitrarily shaped cracks in plane inhomogeneous regions. Eng Fract Mech 19:481CrossRefGoogle Scholar
  32. 32.
    Neda Z, Jozsa L, Ravasz M et al (2002) Spiral cracks in drying precipitates. Phys Rev Lett 88(9):095,502CrossRefGoogle Scholar
  33. 33.
    Nguyen V, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods, a review and computer implementation aspects. Math Comput Simul 79:763–813CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Oñate E, Idelsohn S, Zienkiewicz O, Taylor R (1996) A finite point method in computational mechanics. applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866CrossRefzbMATHGoogle Scholar
  35. 35.
    Piegl L, Tiller W (1995) The NURBS book. Springer-Verlag, LondonCrossRefzbMATHGoogle Scholar
  36. 36.
    Qin Z, Pugno N, Buehler M (2014) Mechanics of fragmentation of crocodile skin and other thin films. Sci Rep 4:4966Google Scholar
  37. 37.
    Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343CrossRefzbMATHGoogle Scholar
  38. 38.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37):2437–2455CrossRefzbMATHGoogle Scholar
  39. 39.
    Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press Inc, San DiegoGoogle Scholar
  40. 40.
    Sendova M, Willis K (2003) Spiral and curved periodic crack patterns in sol–gel films. Appl Phys A 76(6):957–959CrossRefGoogle Scholar
  41. 41.
    Sevilla R, Fernández-Méndez S (2011) Numerical integration over 2D NURBS shaped domains with applications to NURBS-enhanced FEM. Finite Elem Anal Des 47(10):1209–1220CrossRefMathSciNetGoogle Scholar
  42. 42.
    Sevilla R, Fernández-Méndez S, Huerta A (2011a) 3D-NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 88(2):103–125CrossRefzbMATHGoogle Scholar
  43. 43.
    Sevilla R, Fernández-Méndez S, Huerta A (2011b) Comparison of high-order curved finite elements. Int J Numer Methods Eng 87(8):719–734CrossRefzbMATHGoogle Scholar
  44. 44.
    Sevilla R, Fernández-Méndez S, Huerta A (2011c) NURBS-enhanced finite element method (NEFEM): a seamless bridge between CAD and FEM. Arch Comput Methods Eng 18(4):441–484CrossRefMathSciNetGoogle Scholar
  45. 45.
    Simkins D (2012) Multi-scale structural mechanics for advanced aircraft design. J Nonlinear Syst Appl 3(1):41–45Google Scholar
  46. 46.
    Simkins D, Li S (2006) Meshfree simulations of thermo-mechanical ductile fracture. Comput Mech 38(3):235–249Google Scholar
  47. 47.
    Sukumar N (1998) The natural element method in solid mechanics. PhD thesis, Northwestern University Google Scholar
  48. 48.
    Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook. ASME, New YorkCrossRefGoogle Scholar
  49. 49.
    Walters MC, Paulino GH, Dodds RH (2005) Interaction integral procedures for 3-d curved cracks including surface tractions. Eng Fract Mech 72(11):1635–1663CrossRefGoogle Scholar
  50. 50.
    Wan N, Xu J, Lin T, Xu L, Chen K (2009) Observation and model of highly ordered wavy cracks due to coupling of in-plane stress and interface debonding in silica thin films. Phys Rev B 80(1):014,121CrossRefGoogle Scholar
  51. 51.
    Xia ZC, Hutchinson JW (2000) Crack patterns in thin films. J Mech Phys Solids 48(6):1107–1131CrossRefzbMATHGoogle Scholar
  52. 52.
    Xie ZQ, Sevilla R, Hassan O, Morgan K (2013) The generation of arbitrary order curved meshes for 3D finite element analysis. Comput Mech 51(3):361–374CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Xu XP, Needleman A (1995) Numerical simulations of dynamic crack growth along an interface. Int J Fract 74(4):289–324CrossRefGoogle Scholar
  54. 54.
    Yagawa G, Yamada T (1996) Free mesh method: a new meshless finite element method. Comput Mech 18(5):383–386CrossRefzbMATHGoogle Scholar
  55. 55.
    Zhu T, Zhang JD, Atluri S (1998) A local boundary integral equation (lbie) method in computational mechanics, and a meshless discretization approach. Comput Mech 21(3):223–235CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of EngineeringSwansea UniversitySwanseaUK
  2. 2.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations