NURBS distance fields for extremely curved cracks
- 404 Downloads
- 3 Citations
Abstract
This paper proposes for the first time an intrinsic enrichment for extremely curved cracks in a meshfree framework. The unique property of the proposed method lies in the exact geometric representation of cracks using non-uniform rational B-splines (NURBS). A distance function algorithm for NURBS is presented, resulting in a spatial field which is simultaneously discontinuous over the (finite) curved crack and continuous all around the crack tips. Numerical examples show the potential of the proposed approach and illustrate its advantages with respect to other techniques usually employed to model fracture, including standard finite elements with remeshing and the extended finite element method. This work represents a further step in an ongoing effort in the community to integrate computer aided design with numerical simulations.
Keywords
Cracks NURBS Enrichments Distance fields PatternsReferences
- 1.Argon A (1959) Surface cracks on glass. Proc R Soc Lond A Math Phys Sci 250(1263):472–481CrossRefGoogle Scholar
- 2.Atluri S, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127CrossRefMATHMathSciNetGoogle Scholar
- 3.Barbieri E, Meo M (2012) A fast object-oriented Matlab implementation of the Reproducing Kernel Particle Method. Comput Mech 49(5):581–602CrossRefMATHMathSciNetGoogle Scholar
- 4.Barbieri E, Petrinic N (2013) Multiple crack growth and coalescence in meshfree methods with a distance function-based enriched kernel. In: Key engineering materials—Advances in crack growth modeling, TransTech Publications, p 170Google Scholar
- 5.Barbieri E, Petrinic N (2014) Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Comput Mech 53(2):325–342CrossRefMATHMathSciNetGoogle Scholar
- 6.Barbieri E, Petrinic N, Meo M, Tagarielli V (2012) A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity. Int J Numer Methods Eng 90(2):177–195CrossRefMATHMathSciNetGoogle Scholar
- 7.Belytschko T, Gu L, Lu Y (1994a) Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng 2:519–534CrossRefGoogle Scholar
- 8.Belytschko T, Lu Y, Gu L (1994b) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256CrossRefMATHMathSciNetGoogle Scholar
- 9.Belytschko T, Lu Y, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315CrossRefGoogle Scholar
- 10.Brokenshire DR (1996) A study of torsion fracture tests. PhD thesis, Cardiff UniversityGoogle Scholar
- 11.Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1):195–227CrossRefMATHMathSciNetGoogle Scholar
- 12.Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47(12):2039–2072CrossRefMATHGoogle Scholar
- 13.Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRefGoogle Scholar
- 14.Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12):1741–1760CrossRefMATHGoogle Scholar
- 15.Duarte CA, Oden JT (1996) Hp clouds-an hp meshless method. Numer methods Partial Differ Equ 12(6):673–706CrossRefMATHMathSciNetGoogle Scholar
- 16.Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1257–1275CrossRefMATHGoogle Scholar
- 17.Fries T, Matthies H (2003) Classification and overview of meshfree methods. Brunswick, Institute of Scientific Computing, Technical University Braunschweig, Germany Informatikbericht Nr 3Google Scholar
- 18.Goehring L, Clegg WJ, Routh AF (2011) Wavy cracks in drying colloidal films. Soft Matter 7(18):7984–7987CrossRefGoogle Scholar
- 19.Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69(3):299–319CrossRefGoogle Scholar
- 20.Griebel M, Schweitzer MA (eds) (2008) Meshfree methods for partial differential equations IV. In: Lecture notes in computational science and engineering, vol 65. Springer, BerlinGoogle Scholar
- 21.Huerta A, Belytschko T, Fernández-Méndez S, Rabczuk T (2004) Meshfree methods. In: Encyclopedia of computational mechanics, Fundamentals, vol 1. Wiley, Chichester, pp 279–309Google Scholar
- 22.Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003) The meshless finite element method. Int J Numer Methods Eng 58(6):893–912CrossRefMATHGoogle Scholar
- 23.Inoue K, Kikuchi Y, Masuyama T (2005) A NURBS finite element method for product shape design. J Eng Design 16(2):157–174CrossRefGoogle Scholar
- 24.Lazarus V, Pauchard L (2011) From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7(6):2552–2559CrossRefGoogle Scholar
- 25.Legrain G (2013) A NURBS-enhanced extended finite element approach for unfitted CAD analysis. Comput Mech 52(4):913– 929Google Scholar
- 26.Leung KT, Jozsa L, Ravasz M, Neda Z (2001) Pattern formation: spiral cracks without twisting. Nature 410(6825):166–166CrossRefGoogle Scholar
- 27.Liu WK, Jun S, Li S, Adee J, Belytschko T (1995a) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679CrossRefMATHMathSciNetGoogle Scholar
- 28.Liu WK, Jun S, Zhang YI (1995b) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106CrossRefMATHMathSciNetGoogle Scholar
- 29.Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat commun 5:3166CrossRefGoogle Scholar
- 30.Nam KH, Park IH, Ko SH (2012) Patterning by controlled cracking. Nature 485(7397):221–224CrossRefGoogle Scholar
- 31.Narendran V, Cleary MP (1984) Elastostatic interaction of multiple arbitrarily shaped cracks in plane inhomogeneous regions. Eng Fract Mech 19:481CrossRefGoogle Scholar
- 32.Neda Z, Jozsa L, Ravasz M et al (2002) Spiral cracks in drying precipitates. Phys Rev Lett 88(9):095,502CrossRefGoogle Scholar
- 33.Nguyen V, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods, a review and computer implementation aspects. Math Comput Simul 79:763–813CrossRefMATHMathSciNetGoogle Scholar
- 34.Oñate E, Idelsohn S, Zienkiewicz O, Taylor R (1996) A finite point method in computational mechanics. applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866CrossRefMATHGoogle Scholar
- 35.Piegl L, Tiller W (1995) The NURBS book. Springer-Verlag, LondonCrossRefMATHGoogle Scholar
- 36.Qin Z, Pugno N, Buehler M (2014) Mechanics of fragmentation of crocodile skin and other thin films. Sci Rep 4:4966Google Scholar
- 37.Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343CrossRefMATHGoogle Scholar
- 38.Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37):2437–2455CrossRefMATHGoogle Scholar
- 39.Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press Inc, San DiegoGoogle Scholar
- 40.Sendova M, Willis K (2003) Spiral and curved periodic crack patterns in sol–gel films. Appl Phys A 76(6):957–959CrossRefGoogle Scholar
- 41.Sevilla R, Fernández-Méndez S (2011) Numerical integration over 2D NURBS shaped domains with applications to NURBS-enhanced FEM. Finite Elem Anal Des 47(10):1209–1220CrossRefMathSciNetGoogle Scholar
- 42.Sevilla R, Fernández-Méndez S, Huerta A (2011a) 3D-NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 88(2):103–125CrossRefMATHGoogle Scholar
- 43.Sevilla R, Fernández-Méndez S, Huerta A (2011b) Comparison of high-order curved finite elements. Int J Numer Methods Eng 87(8):719–734CrossRefMATHGoogle Scholar
- 44.Sevilla R, Fernández-Méndez S, Huerta A (2011c) NURBS-enhanced finite element method (NEFEM): a seamless bridge between CAD and FEM. Arch Comput Methods Eng 18(4):441–484CrossRefMathSciNetGoogle Scholar
- 45.Simkins D (2012) Multi-scale structural mechanics for advanced aircraft design. J Nonlinear Syst Appl 3(1):41–45Google Scholar
- 46.Simkins D, Li S (2006) Meshfree simulations of thermo-mechanical ductile fracture. Comput Mech 38(3):235–249Google Scholar
- 47.Sukumar N (1998) The natural element method in solid mechanics. PhD thesis, Northwestern University Google Scholar
- 48.Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook. ASME, New YorkCrossRefGoogle Scholar
- 49.Walters MC, Paulino GH, Dodds RH (2005) Interaction integral procedures for 3-d curved cracks including surface tractions. Eng Fract Mech 72(11):1635–1663CrossRefGoogle Scholar
- 50.Wan N, Xu J, Lin T, Xu L, Chen K (2009) Observation and model of highly ordered wavy cracks due to coupling of in-plane stress and interface debonding in silica thin films. Phys Rev B 80(1):014,121CrossRefGoogle Scholar
- 51.Xia ZC, Hutchinson JW (2000) Crack patterns in thin films. J Mech Phys Solids 48(6):1107–1131CrossRefMATHGoogle Scholar
- 52.Xie ZQ, Sevilla R, Hassan O, Morgan K (2013) The generation of arbitrary order curved meshes for 3D finite element analysis. Comput Mech 51(3):361–374CrossRefMATHMathSciNetGoogle Scholar
- 53.Xu XP, Needleman A (1995) Numerical simulations of dynamic crack growth along an interface. Int J Fract 74(4):289–324CrossRefGoogle Scholar
- 54.Yagawa G, Yamada T (1996) Free mesh method: a new meshless finite element method. Comput Mech 18(5):383–386CrossRefMATHGoogle Scholar
- 55.Zhu T, Zhang JD, Atluri S (1998) A local boundary integral equation (lbie) method in computational mechanics, and a meshless discretization approach. Comput Mech 21(3):223–235CrossRefMATHMathSciNetGoogle Scholar