Computational Mechanics

, Volume 54, Issue 5, pp 1191–1202 | Cite as

A variational multiscale method for particle-cloud tracking in turbomachinery flows

  • A. Corsini
  • F. Rispoli
  • A. G. Sheard
  • K. Takizawa
  • T. E. Tezduyar
  • P. Venturini
Original Paper

Abstract

We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier–Stokes model and Streamline-Upwind/Petrov–Galerkin/Pressure-Stabilizing/Petrov–Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence–particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

Keywords

Particle cloud tracking Turbulent particle dispersion Variational multiscale method 

References

  1. 1.
    Kurz R, Brun K (2001) Degradation in gas turbine systems. ASME J Eng Gas Turbine Power 123:70–77CrossRefGoogle Scholar
  2. 2.
    Hamed A, Tabakoff W, Wenglarz R (2006) Erosion and deposition in turbomachinery. J Propul Power 22:350–360CrossRefGoogle Scholar
  3. 3.
    Tabakoff W, Kotwal R, Hamed A (1979) Erosion study of different materials affected by coal ash particles. Wear 52(1):161–173CrossRefGoogle Scholar
  4. 4.
    Grant G, Tabakoff W (1975) Erosion prediction in turbomachinery resulting from environmental solid particles. J Aircr 12(5):471–478CrossRefGoogle Scholar
  5. 5.
    Richardson JH, Sallee GP, Smakula FK (1979) Causes of high pressure compressor deterioration in service. AIAA Paper No. 79–1234Google Scholar
  6. 6.
    Hussein MF, Tabakoff W (1974) Computation and plotting of solid particle flow in rotating cascades. Comput Fluids 2(1):1–15CrossRefMATHGoogle Scholar
  7. 7.
    Elfeki S, Tabakoff W (1987) Erosion study of radial flow compressor with splitters. J Turbomach 109(1):62–69CrossRefGoogle Scholar
  8. 8.
    Ghenaiet A, Tan SC, Elder RL (2004) Experimental investigation of axial fan erosion and performance degradation. Proc Inst Mech Eng Part A 218(6):437–446CrossRefGoogle Scholar
  9. 9.
    Ghenaiet A (2005) Numerical simulations of flow and particle dynamics within a centrifugal turbomachine. Compressors and Their Systems 2005, IMechE Paper No. C639–52Google Scholar
  10. 10.
    Ghenaiet A (2009) Numerical study of sand ingestion through a ventilating system. In: Proceedings of the world congress on engineering, London, UKGoogle Scholar
  11. 11.
    Baxter LL, Smith PJ (1993) Turbulent dispersion of particles: the STP model. Energy Fuels 7:852–859CrossRefGoogle Scholar
  12. 12.
    Venturini P (2010) Modelling of particle-wall deposition in two-phase gas–solid flows. PhD thesis, Sapienza Università di Roma, Rome, ItalyGoogle Scholar
  13. 13.
    Corsini A, Marchegiani A, Rispoli F, Venturini P (2012) Predicting blade leading edge erosion in an axial induced draft fan. ASME J Eng Gas Turbines Power 134(4):042601CrossRefGoogle Scholar
  14. 14.
    Corsini A, Rispoli F, Sheard AG, Venturini P (2013) Numerical simulation of coal fly-ash erosion in an induced draft fan. ASME J Fluids Eng 135:081303 (12 pages)CrossRefGoogle Scholar
  15. 15.
    Cardillo L, Corsini A, Delibra G, Rispoli F, Sheard AG, Venturini P (2014) Simulation of particle-laden flows in a large centrifugal fan for erosion prediction. In: 58th American society of mechanical engineers turbine and aeroengine congress, Düsseldorf, Germany, 16–20 June, Paper No. GT2014-25865Google Scholar
  16. 16.
    Kær SK (2001) Numerical investigation of ash deposition in straw-fired furnaces. PhD thesis, Aalborg University, Aalborg, DenmarkGoogle Scholar
  17. 17.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95:221–242CrossRefMATHGoogle Scholar
  20. 20.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Corsini A, Menichini F, Rispoli F, Santoriello A, Tezduyar TE (2009) A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reaction like terms. J Appl Mech 76:021211CrossRefGoogle Scholar
  22. 22.
    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46:159–167MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65:254–270MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325CrossRefMATHGoogle Scholar
  25. 25.
    Tezduyar TE, Park YJ, Deans HA (1987) Finite element procedures for time-dependent convection-diffusion-reaction systems. Int J Numer Methods Fluids 7:1013–1033CrossRefMATHGoogle Scholar
  26. 26.
    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422CrossRefMATHGoogle Scholar
  28. 28.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430CrossRefMATHGoogle Scholar
  29. 29.
    Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70:2–9CrossRefMATHGoogle Scholar
  30. 30.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Intl J Numer Methods Fluids 43:555–575MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193:1909–1922CrossRefMATHGoogle Scholar
  32. 32.
    Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible Flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-capturing. Comput Fluids 36:147–159Google Scholar
  36. 36.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible Flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38:334–343CrossRefMATHGoogle Scholar
  37. 37.
    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta \) shock-capturing. Comput Mech 38:469–481Google Scholar
  38. 38.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126CrossRefMATHGoogle Scholar
  39. 39.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ\(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608Google Scholar
  40. 40.
    Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201CrossRefMATHGoogle Scholar
  41. 41.
    Hughes TJR, Scovazzi G, Tezduyar TE (2010) Stabilized methods for compressible flows. J Sci Comput 43:343–368MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZ\(\beta \) shock-capturing. J Appl Mech 76:021208Google Scholar
  43. 43.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Tezduyar TE (2011) Comments on ‘Adiabatic shock capturing in perfect gas hypersonic flows. Int J Numer Methods Fluids 66:935–938MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2010) Space–time SUPG formulation of the shallow-water equations. Int J Numer Methods Fluids 64:1379–1394MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344CrossRefMATHGoogle Scholar
  48. 48.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657CrossRefMATHGoogle Scholar
  49. 49.
    Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48:293–306MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Kler PA, Dalcin LD, Paz RR, Tezduyar TE (2012) SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Comput Mech (published online). doi:10.1007/s00466-012-0712-z
  51. 51.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401CrossRefMATHGoogle Scholar
  52. 52.
    Borello D, Corsini A, Rispoli F (2003) A finite element overlapping scheme for turbomachinery flows on parallel platforms. Comput Fluids 32:1017–1047CrossRefMATHGoogle Scholar
  53. 53.
    Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22:237–254CrossRefGoogle Scholar
  54. 54.
    Corsini A, Rispoli F (2005) Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy viscosity closure. Int J Heat Fluid Flow 17:108–155Google Scholar
  55. 55.
    Craft TJ, Launder BE, Suga K (1996) Development and application of a cubic eddy-viscosity model of turbulence. Int J Heat Fluid Flow 17:108–155CrossRefGoogle Scholar
  56. 56.
    Laín S, Sommerfeld M (2003) Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective. Int J Heat Fluid Flow 24:616–625CrossRefGoogle Scholar
  57. 57.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218CrossRefMATHGoogle Scholar
  58. 58.
    Baxter LL (1989) Turbulent transport of particles. PhD thesis, Brigham Young University, Provo, UT, USAGoogle Scholar
  59. 59.
    Wang LP (1990) On the dispersion of heavy particles by turbulent motion, PhD thesis. Washington State University, Pullman, WA, USAGoogle Scholar
  60. 60.
    Litchford LJ, Jeng SM (1991) Efficient statistical transport model for turbulent particle dispersion in sprays. AIAA J 29:1443–1451CrossRefGoogle Scholar
  61. 61.
    Jain S (1995) Three-dimensional simulation of turbulent particle dispersion, PhD thesis. University of Utah, Salt Lake City, UT, USAGoogle Scholar
  62. 62.
    Borello D, Venturini P, Rispoli F, Saavedra GZR (2013) Prediction of multiphase combustion and ash deposition within a biomass furnace. Appl Energy 101:413–422CrossRefGoogle Scholar
  63. 63.
    Venturini P, Borello D, Iossa CV, Lentini D, Rispoli F (2010) Modelling of multiphase combustion and deposit formation and deposit formation in a biomass-fed boiler. Energy 35:3008–3021CrossRefGoogle Scholar
  64. 64.
    Armenio V, Fiorotto V (2001) The importance of the forces acting on particles in turbulent flows. Phys Fluids 13(8):2437–2440 Google Scholar
  65. 65.
    Schiller L, Naumann A (1933) Uber die grundlegenden Berechnungen bei der Schwekraftaubereitung. Zeitschrift des Vereines Deutscher Ingenieure 77(12):318–320Google Scholar
  66. 66.
    Smith PJ (1991) 3-D Turbulent particle dispersion submodel development. Quarterly Progress Report #1. Department of Energy, Pittsburgh Energy Technology Center, Pittsburgh, PAGoogle Scholar
  67. 67.
    Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput Methods Appl Mech Eng 194:4797–4823MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D Simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235CrossRefMATHGoogle Scholar
  69. 69.
    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech (published online). doi:10.1007/s00466-012-0686-x
  70. 70.
    Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech (published online). doi:10.1007/s00466-012-0772-0
  71. 71.
    Corsini A, Rispoli F (2004) Using sweep to extend stall-free operational range in axial fan rotors. J Power Energy 218:129–139CrossRefGoogle Scholar
  72. 72.
    Wang LP, Stock DE (1993) Dispersion of heavy particles in turbulent motion. J Atmos Sci 50:1897–1913CrossRefGoogle Scholar
  73. 73.
    Wang LP, Stock DE (1992) Numerical simulation of heavy particle dispersion: time step and non-linear drag considerations. J Fluids Eng 114:100–106CrossRefGoogle Scholar
  74. 74.
    Sato Y, Yamamoto K (1987) Lagrangian measurement of fluid-particle motion in an isotropic turbulent field. J Fluid Mech 175:183–199CrossRefGoogle Scholar
  75. 75.
    Reeks MW (1977) On the dispersion of small particles suspended in an isotropic turbulent field. J Fluid Mech 83:529–546CrossRefMATHGoogle Scholar
  76. 76.
    Csanady GT (1963) Turbulent diffusion of heavy particles in the atmosphere. J Atmos Sci 20:201–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Corsini
    • 1
  • F. Rispoli
    • 1
  • A. G. Sheard
    • 2
  • K. Takizawa
    • 3
  • T. E. Tezduyar
    • 4
  • P. Venturini
    • 1
  1. 1.Dipartimento di Ingegneria Meccanica e AerospazialeSapienza University of RomeRomeItaly
  2. 2.HowdenUK
  3. 3.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  4. 4.Mechanical EngineeringRice University - MS 321HoustonUSA

Personalised recommendations