Advertisement

Computational Mechanics

, Volume 54, Issue 4, pp 973–986 | Cite as

Space–time fluid mechanics computation of heart valve models

  • Kenji Takizawa
  • Tayfun E. Tezduyar
  • Austin Buscher
  • Shohei Asada
Original Paper

Abstract

Fluid mechanics computation of heart valves with an interface-tracking (moving-mesh) method was one of the classes of computations targeted in introducing the space–time (ST) interface tracking method with topology change (ST-TC). The ST-TC method is a new version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method. It can deal with an actual contact between solid surfaces in flow problems with moving interfaces, while still possessing the desirable features of interface-tracking methods, such as better resolution of the boundary layers. The DSD/SST method with effective mesh update can already handle moving-interface problems when the solid surfaces are in near contact or create near TC, if the “nearness” is sufficiently “near” for the purpose of solving the problem. That, however, is not the case in fluid mechanics of heart valves, as the solid surfaces need to be brought into an actual contact when the flow has to be completely blocked. Here we extend the ST-TC method to 3D fluid mechanics computation of heart valve models. We present computations for two models: an aortic valve with coronary arteries and a mechanical aortic valve. These computations demonstrate that the ST-TC method can bring interface-tracking accuracy to fluid mechanics of heart valves, and can do that with computational practicality.

Keywords

Heart valves Fluid mechanics computation Contact  Topology change Space–time interface-tracking ST-TC method DSD/SST method Moving-mesh method 

Notes

Acknowledgments

This work was supported in part by JST-CREST and Rice–Waseda research agreement (first and fourth authors).

References

  1. 1.
    Takizawa K, Tezduyar TE, Buscher A, Asada, S (October 2013) Space–time interface-tracking with topology change (ST-TC). Comput Mech. doi: 10.1007/s00466-013-0935-7
  2. 2.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575. doi: 10.1002/fld.505 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. doi: 10.1007/s00466-008-0261-7 CrossRefMATHGoogle Scholar
  4. 4.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, London. ISBN:978-0470978771Google Scholar
  5. 5.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225. doi: 10.1007/s11831-012-9071-3 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686. doi: 10.1007/s00466-012-0760-4 CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073. doi: 10.1007/s00466-012-0790-y CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci. doi: 10.1142/S0218202514500250
  9. 9.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi: 10.1016/S0065-2156(08)70153-4 CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi: 10.1016/0045-7825(92)90059-S CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371. doi: 10.1016/0045-7825(92)90060-W
  12. 12.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900. doi: 10.1002/fld.1430 CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267. doi: 10.1007/s00466-011-0571-z CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22:1230001. doi: 10.1142/S0218202512300013 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009–3019CrossRefMATHGoogle Scholar
  17. 17.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27:599–621CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38:403–416CrossRefMATHGoogle Scholar
  20. 20.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43:81–90CrossRefMATHGoogle Scholar
  22. 22.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRefGoogle Scholar
  26. 26.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. doi: 10.1002/fld.2400 CrossRefMATHGoogle Scholar
  27. 27.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253CrossRefMATHGoogle Scholar
  28. 28.
    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599CrossRefMathSciNetGoogle Scholar
  30. 30.
    Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48:269–276. doi: 10.1007/s00466-011-0620-7 CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci 22:1230002. doi: 10.1142/S0218202512300025 CrossRefGoogle Scholar
  32. 32.
    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905CrossRefGoogle Scholar
  33. 33.
    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41CrossRefMathSciNetGoogle Scholar
  34. 34.
    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput Mech 50:499–511CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRefMATHGoogle Scholar
  37. 37.
    Minami S, Kawai H, Yoshimura S (2012) Parallel BDD-based monolithic approach for acoustic fluid–structure interaction. Comput Mech 50:707–718CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Miras T, Schotte J-S, Ohayon R (2012) Energy approach for static and linearized dynamic studies of elastic structures containing incompressible liquids with capillarity: a theoretical formulation. Comput Mech 50:729–741CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    van Opstal TM, van Brummelen EH, de Borst R, Lewis MR (2012) A finite-element/boundary-element method for large-displacement fluid–structure interaction. Comput Mech 50:779–788CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Yao JY, Liu GR, Narmoneva DA, Hinton RB, Zhang Z-Q (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 50:789–804CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Larese A, Rossi R, Onate E, Idelsohn SR (2012) A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Comput Mech 50:805–819CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221. doi: 10.1142/S0218202513400010 CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Bazilevs Y, Hsu M-C, Bement MT (2013) Adjoint-based control of fluid–structure interaction for computational steering applications. Procedia Comput Sci 18:1989–1998CrossRefGoogle Scholar
  44. 44.
    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011. doi: 10.1115/1.4024415
  46. 46.
    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) FSI modeling of vertical-axis wind turbines. J Appl Mech. doi: 10.1115/1.4027466
  47. 47.
    Yao JY, Liu GR, Qian D, Chen CL, Xu GX (2013) A moving-mesh gradient smoothing method for compressible CFD problems. Math Models Methods Appl Sci 23:273–305CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Kamran K, Rossi R, Onate E, Idelsohn SR (2013) A compressible Lagrangian framework for modeling the fluid–structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23:339–367Google Scholar
  49. 49.
    Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481CrossRefGoogle Scholar
  50. 50.
    Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981. doi: 10.1007/s00466-013-0858-3 CrossRefMATHGoogle Scholar
  51. 51.
    Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2013) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech. doi: 10.1007/s00466-013-0931-y
  52. 52.
    Yao J, Liu GR (2014) A matrix-form GSM-CFD solver for incompressible fluids and its application to hemodynamics. Comput Mech. doi: 10.1007/s00466-014-0990-8
  53. 53.
    Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech. doi: 10.1007/s00466-013-0967-z
  54. 54.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi: 10.1115/1.4005073 CrossRefGoogle Scholar
  55. 55.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760. doi: 10.1007/s00466-012-0759-x CrossRefMATHGoogle Scholar
  56. 56.
    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778. doi: 10.1007/s00466-012-0758-y CrossRefMATHGoogle Scholar
  57. 57.
    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. doi: 10.1007/s00466-013-0888-x CrossRefMATHGoogle Scholar
  58. 58.
    Takizawa K, Tezduyar TE, Kostov N (2014) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech. doi: 10.1007/s00466-014-0980-x
  59. 59.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi: 10.1002/fld.2221 CrossRefMATHGoogle Scholar
  60. 60.
    Griffith BE, Luo X, McQueen DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 1:137–177CrossRefGoogle Scholar
  61. 61.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41. doi: 10.1007/s00466-009-0425-0 CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    On-X Life Technologies, Inc.—designed for life. http://www.onxlti.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Tayfun E. Tezduyar
    • 2
  • Austin Buscher
    • 2
  • Shohei Asada
    • 1
  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations