Advertisement

Computational Mechanics

, Volume 54, Issue 3, pp 745–762 | Cite as

A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology

  • A. Javili
  • A. McBride
  • P. Steinmann
  • B. D. Reddy
Original Paper

Abstract

A curvilinear-coordinate-based finite element methodology is presented as a basis for a straightforward computational implementation of the theory of surface elasticity that mimics the underlying mathematical and geometrical concepts. An efficient formulation is obtained by adopting the same methodology for both the bulk and the surface. The key steps to evaluate the hyperelastic constitutive relations at the level of the quadrature point in a finite element scheme using this unified approach are provided. The methodology is illustrated through selected numerical examples.

Keywords

Surface elasticity Curvilinear coordinates Finite element 

References

  1. 1.
    Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires: a combined experimental–computational approach. Nano Lett 8(11):3668–3674CrossRefGoogle Scholar
  2. 2.
    Altenbach H, Eremeyev V (2011) On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 49(12):1294–1301CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bangerth W, Hartmann R, Kanschat G (2007) deal.II: A general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bangerth W, Heister T, Kanschat G et al (2013) deal.II Differential equations analysis library, Technical Reference http://www.dealii.org
  5. 5.
    Benveniste Y, Berdichevsky O (2010) On two models of arbitrarily curved three-dimensional thin interphases in elasticity. Int J Solids Struct 47(1415):1899–1915CrossRefzbMATHGoogle Scholar
  6. 6.
    Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46(1):1–38Google Scholar
  9. 9.
    Ciarlet PG (2005) An introduction to differential geometry with applications to elasticity. J Elast 78:1–215CrossRefMathSciNetGoogle Scholar
  10. 10.
    Davydov D, Javili A, Steinmann P (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 69:510–519CrossRefGoogle Scholar
  11. 11.
    DeSimone A, Heltai L, Manigrasso C (2009) Tools for the solution of pdes defined on curved manifolds with deal.ii. http://www.dealii.org/7.3.0/reports/codimension-one/desimone-heltai-manigrasso.pdf
  12. 12.
    Dettmer W, Perić D (2006) A computational framework for free surface fluid flows accounting for surface tension. Comput Methods Appl Mech Eng 195(23–24):3038–3071CrossRefzbMATHGoogle Scholar
  13. 13.
    Dingreville R, Qu J (2007) A semi-analytical method to compute surface elastic properties. Acta Mater 55(1):141–147CrossRefGoogle Scholar
  14. 14.
    Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Duan H, Wang J, Karihaloo B (2009) Theory of elasticity at the nonoscale. Adv Appl Mech 42:1–68CrossRefGoogle Scholar
  16. 16.
    Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Physi Rev B 75:64206CrossRefGoogle Scholar
  17. 17.
    Duan HL, Wang J, Huang ZP, Karihalo BL (2005) Eshelby formalism for nano-inhomogeneities. Proc R Soc A 461(2062):3335–3353CrossRefzbMATHGoogle Scholar
  18. 18.
    Fischer FD, Svoboda J (2010) Stresses in hollow nanoparticles. Sci Direct 47:2799–2805zbMATHGoogle Scholar
  19. 19.
    Green AE, Zerna W (1968) Theoretical elasticity. Oxford University Press, OxfordzbMATHGoogle Scholar
  20. 20.
    Gu ST, He Q-C (2011) Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J Mech Phys Solids 59(7):1413–1426CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8(7):1798–1802CrossRefGoogle Scholar
  23. 23.
    Heltai L (2008) On the stability of the finite element immersed boundary method. Comput Struct 86(7–8):598–617CrossRefGoogle Scholar
  24. 24.
    Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82(1):87–93CrossRefzbMATHGoogle Scholar
  25. 25.
    Huang Z, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190:151–163CrossRefzbMATHGoogle Scholar
  26. 26.
    Hung Z, Wang J (2006) A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech 182:195–210CrossRefGoogle Scholar
  27. 27.
    Itskov M (2007) Tensor algebra and tensor analysis for engineers. Springer, BerlinzbMATHGoogle Scholar
  28. 28.
    Javili A, McBride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802CrossRefGoogle Scholar
  29. 29.
    Javili A, McBride A, Steinmann P, Reddy BD (2012) Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos Mag 92:3540–3563CrossRefGoogle Scholar
  30. 30.
    Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput Methods Appl Mech Eng 198(27–29):2198–2208CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Javili A, Steinmann P (2010a) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Javili A, Steinmann P (2010b) On thermomechanical solids with boundary structures. Int J Solids Struct 47(24):3245–3253CrossRefzbMATHGoogle Scholar
  33. 33.
    Javili A, Steinmann P (2011) A finite element framework for continua with boundary energies. Part III: the thermomechanical case. Comput Methods Appl Mech Eng 200(21–22):1963–1977CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Kreyszig E (1991) Differential geometry. Dover Publications, New YorkGoogle Scholar
  35. 35.
    Levitas VI (2013) Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater 61:4305–4319CrossRefGoogle Scholar
  36. 36.
    McBride A, Javili A (2013) An efficient finite element implementation for problems in surface elasticity.Google Scholar
  37. 37.
    Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139CrossRefGoogle Scholar
  38. 38.
    Orowan E (1970) Surface energy and surface tension in solids and liquids. Proc R Soc 316:473–491CrossRefGoogle Scholar
  39. 39.
    Park HS, Klein PA (2007) Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75(8):1–9CrossRefGoogle Scholar
  40. 40.
    Park HS, Klein PA (2008) A Surface Cauchy–Born model for silicon nanostructures. Comput Methods Appl Mech Eng 197(41–42):3249–3260CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Park HS, Klein PA, Wagner GJ (2006) A surface Cauchy–Born model for nanoscale materials. Int J Numer Methods Eng 68(10):1072–1095CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Saksono PH, Perić D (2005) On finite element modelling of surface tension variational formulation and applications. Part I: quasistatic problems. Comput Mech 38(3):265–281CrossRefGoogle Scholar
  43. 43.
    Scriven LE (1960) Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem Eng Sci 12(2):98–108CrossRefGoogle Scholar
  44. 44.
    Scriven LE, Sternling CV (1960) The marangoni effects. Nature 187:186–188CrossRefGoogle Scholar
  45. 45.
    Sharma P, Ganti S (2004) Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech 71:663–671CrossRefzbMATHGoogle Scholar
  46. 46.
    Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537Google Scholar
  47. 47.
    Sharma P, Wheeler LT (2007) Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech 74(3):447–454CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71(9):1–11 Google Scholar
  49. 49.
    Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc Sect A 63(5):444–457CrossRefGoogle Scholar
  50. 50.
    Steigmann DJ (2009) A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J Elast 97:97–101Google Scholar
  51. 51.
    Sussmann C, Givoli D, Benveniste Y (2011) Combined asymptotic finite-element modeling of thin layers for scalar elliptic problems. Comput Methods Appl Mech Eng 200(4748):3255–3269CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Wang Y, Weissmüller J, Duan HL (2010a) Mechanics of corrugated surfaces. J Mech Phys Solids 58:1552–1566CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Wang Z-Q, Zhao Y-P, Huang Z-P (2010b) The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 48(2):140–150CrossRefMathSciNetGoogle Scholar
  54. 54.
    Wei GW, Shouwen Y (2006) Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17(4):1118–1122CrossRefGoogle Scholar
  55. 55.
    Weissmüller J, Duan H-L, Farkas D (2010) Deformation of solids with nanoscale pores by the action of capillary forces. Acta Mater 58(1):1–13CrossRefGoogle Scholar
  56. 56.
    Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinzbMATHGoogle Scholar
  57. 57.
    Yun G, Park HS (2009) Surface stress effects on the bending properties of fcc metal nanowires. Phys Rev B 79(19):32–35CrossRefGoogle Scholar
  58. 58.
    Yvonnet J, Mitrushchenkov A, Chambaud G, He Q-C (2011) Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng 200(5–8):614–625CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Yvonnet J, Quang HL, He Q-C (2008) An XFEM level set approach to modelling surface–interface effects and computing the size-dependent effective properties of nanocomposites. Comput Mech 42(1):119–131CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Javili
    • 1
  • A. McBride
    • 2
  • P. Steinmann
    • 1
  • B. D. Reddy
    • 2
  1. 1.Chair of Applied MechanicsUniversity of Erlangen–NurembergErlangenGermany
  2. 2.Centre for Research in Computational and Applied MechanicsUniversity of Cape TownRondebosch South Africa

Personalised recommendations