Advertisement

Computational Mechanics

, Volume 54, Issue 1, pp 171–191 | Cite as

Additive particle deposition and selective laser processing-a computational manufacturing framework

  • T. I. Zohdi
Original Paper

Abstract

Many additive manufacturing technologies involve the deposition of particles onto a surface followed by selective, targeted, laser heating. This paper develops a modular computational framework which combines the various steps within this overall process. Specifically, the framework synthesizes the following:
  • particle dynamics, which primarily entails: (a) the movement of the particles induced by contact with the surface, (b) particle-to-particle contact forces and (c) near-field interaction and external electromagnetic fields.

  • laser-input, which primarily entails: (a) absorption of laser energy input and (b) beam interference (attenuation) from particles and

  • particle thermodynamics, which primarily entails: (a) heat transfer between particles in contact by conduction and (b) subsequent thermal softening of the particles.

Numerical examples are provided and extensions are also addressed for two advanced processing scenarios involving solid-liquid-gas phase transformations.

Keywords

Deposition Selective laser processing Manufacturing Particle Laser 

References

  1. 1.
    Ahmad Z, Rasekh M, Edirisinghe M (2010) Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol Mater Eng 295:315–319Google Scholar
  2. 2.
    Akisanya AR, Cocks ACF, Fleck NA (1997) The yield behavior of metal powders. Int J Mech Sci 39:1315–1324Google Scholar
  3. 3.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52Google Scholar
  4. 4.
    Allwood J (2005) What is sustainable manufacturing?. Lecture, Cambridge University, CambridgeGoogle Scholar
  5. 5.
    Anand L, Gu C (2000) Granular materials: constitutive equations and shear localization. J Mech Phys Solids 48:1701–1733zbMATHMathSciNetGoogle Scholar
  6. 6.
    Avci B, Wriggers P (2012) A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Appl Mech 79:010901-1-7Google Scholar
  7. 7.
    Boyer TH (1988) The force on a magnetic dipole. Am J Phys 56 (8):688–692. Bibcode:1988AmJPh.56.688B. doi: 10.1119/1.15501 Google Scholar
  8. 8.
    Brown S, Abou-Chedid G (1994) Yield behavior of metal powder assemblages. J Mech Phys Solids 42:383–398Google Scholar
  9. 9.
    Carbonell JM, Onate E, Suarez B (2010) Modeling of ground excavation with the particle finite element method. J Eng Mech ASCE 136:455–463Google Scholar
  10. 10.
    Choi S, Park I, Hao Z, Holman HY, Pisano AP, Zohdi TI (2010) Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7):4661–4667Google Scholar
  11. 11.
    Choi S, Stassi S, Pisano AP, Zohdi TI (2010) Coffee-ring effect-based three dimensional patterning of micro, nanoparticle assembly with a single droplet. Langmuir 26(14):11690–11698Google Scholar
  12. 12.
    Choi S, Jamshidi A, Seok TJ, Zohdi TI, Wu. MC, Pisano AP (2012) Fast, high-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6):3102–3111Google Scholar
  13. 13.
    Choi S, Pisano AP, Zohdi TI (2013) An analysis of evaporative self-assembly of micro particles in printed picoliter suspension droplets. J Thin Solid Films 537(30):180–189Google Scholar
  14. 14.
    Cullity BD, Graham CD (2008) Introduction to magnetic Materials, 2 edn. Wiley-IEEE Press, New Jersey, p 103 ISBN 0-471-47741-9Google Scholar
  15. 15.
    Davis SH (2001) Theory of solidification. Cambridge University Press, CambridgezbMATHGoogle Scholar
  16. 16.
    Deckard C (1986) Method and apparatus for producing parts by selective sintering U.S. Patent 4,863,538Google Scholar
  17. 17.
    Demko M, Choi S, Zohdi TI, Pisano AP (2012) High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl Phys Lett 99:253102-1–253102-3Google Scholar
  18. 18.
    Demkowicz (2006) Computing with hp-adaptive finite elements. I. One- and two- dimensional elliptic and Maxwell problems. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  19. 19.
    Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2007) Computing with Hp-adaptive finite, vol 2. Frontiers: three dimensional elliptic and maxwell problems with applications. CRC Press, Taylor and Francis, Boca RatonGoogle Scholar
  20. 20.
    Domas F (1997) Eigenschaft profile und Anwendungsü bersicht von EPE und EPP. Technical report of the BASF CompanyGoogle Scholar
  21. 21.
    Donev A, Cisse I, Sachs D, Variano EA, Stillinger F, Connelly R, Torquato S, Chaikin P (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303:990–993Google Scholar
  22. 22.
    Donev A, Stillinger FH, Chaikin PM, Torquato S (2004b) Unusually dense crystal ellipsoid packings. Phys Rev Lett 92:255506Google Scholar
  23. 23.
    Donev A, Torquato S, Stillinger F (2005a) Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I Algorithmic details. J Comput Phys 202:737zbMATHMathSciNetGoogle Scholar
  24. 24.
    Donev A, Torquato S, Stillinger F (2005b) Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II. Application to ellipses and ellipsoids. J Comput Phys 202:765zbMATHMathSciNetGoogle Scholar
  25. 25.
    Donev A, Torquato S, Stillinger FH (2005c) Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys Rev E 71:011105MathSciNetGoogle Scholar
  26. 26.
    Dornfeld D, Wright P (2007) Technology wedges for implementing green manufacturing. Trans North Am Manuf Res Inst 35:193–200Google Scholar
  27. 27.
    Duran J (1997) Sands, powders and grains. An introduction to the physics of Granular Matter. Springer, BerlinGoogle Scholar
  28. 28.
    Elmore WC, Heald MA (1985) Physics of waves. Dover Publishers, New YorkGoogle Scholar
  29. 29.
    Farhat C, Lesoinne M, Maman N (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int J Numer Methods Fluids 21:807–835zbMATHMathSciNetGoogle Scholar
  30. 30.
    Farhat C, Lesoinne M (2000) Two efficient staggered procedures for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182:499–516zbMATHGoogle Scholar
  31. 31.
    Farhat C, van der Zee G, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195:1973–2001zbMATHGoogle Scholar
  32. 32.
    Feynman RP, Leighton RB, Sands M (2006) The Feynman lectures on physics vol 2. Addison-Wesley, Reading ISBN 0-8053-9045-6Google Scholar
  33. 33.
    Fleck NA (1995) On the cold compaction of powders. J Mech Phys Solids 43:1409–1431zbMATHMathSciNetGoogle Scholar
  34. 34.
    Frenklach M, Carmer CS (1999) Molecular dynamics using combined quantum & empirical forces: application to surface reactions. Adv Class Trajectory Methods 4:27–63Google Scholar
  35. 35.
    Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11:54–60Google Scholar
  36. 36.
    Gamota D, Brazis P, Kalyanasundaram K, Zhang J (2004) Printed organic and molecular electronics. Kluwer Academic Publishers, New YorkGoogle Scholar
  37. 37.
    Gethin DT, Lewis RW, Ransing RS (2003) A discrete deformable element approach for the compaction of powder systems. Modell Simul Mater Sci Eng 11(1):101–114Google Scholar
  38. 38.
    Grigoropoulos CP (2009) Transport in laser microfabrication. Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Gu C, Kim M, Anand L (2001) Constitutive equations for metal powders: application to powder forming processes. Int J Plast 17:147–209zbMATHGoogle Scholar
  40. 40.
    Haile JM (1992) Molecular dynamics simulations: elementary methods. Wiley, New YorkGoogle Scholar
  41. 41.
    Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6(3):102–115Google Scholar
  42. 42.
    Hase WL (1999) Molecular dynamics of clusters, surfaces, liquids, & interfaces. Advances in classical trajectory methods, vol 4. JAI Press, StamfordGoogle Scholar
  43. 43.
    Housholder R (1979) Molding process. U.S. Patent 4,247,508Google Scholar
  44. 44.
    Ho C, Steingart D, Salminent J, Sin W, Rantala T, Evans J, Wright P (2006) Dispenser printed electrochemical capacitors for power management of millimeter scale lithium ion polymer microbatteries for wireless sensors. 6th International workshop on micro and nanotechnology for power generation and energy conversion applications (PowerMEMS 2006), Berkeley, CAGoogle Scholar
  45. 45.
    Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150(7):G412–417Google Scholar
  46. 46.
    Hull C (1984) Apparatus for production of three-dimensional objects by stereolithography, U.S. Patent 4,575,330Google Scholar
  47. 47.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkGoogle Scholar
  48. 48.
    Johnson K (1985) Contact mechanics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  49. 49.
    Kansaal A, Torquato S, Stillinger F (2002) Diversity of order and densities in jammed hard-particle packings. Phys Rev E 66:041109Google Scholar
  50. 50.
    Ko SH, Park I, Pan H, Grigoropoulos CP, Pisano AP, Luscombe CK, Frechet JMJ (2007) Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 7:1869–1877Google Scholar
  51. 51.
    Ko SH, Park I, Pan H, Misra N, Rogers MS, Grigoropoulos CP, Pisano AP (2008) ZnO nanowire network transistor fabrication by low temperature, all inorganic nanoparticle solution process. Appl Phys Lett 92:154102Google Scholar
  52. 52.
    Labra C, Onate E (2009) High-density sphere packing for discrete element method simulations. Commun Numer Method Eng 25(7):837–849zbMATHMathSciNetGoogle Scholar
  53. 53.
    Lesoinne M, Farhat C (1998) Free staggered algorithm for nonlinear transient aeroelastic problems. AIAA J 36(9):1754–1756Google Scholar
  54. 54.
    Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24–25):3039–3067zbMATHGoogle Scholar
  55. 55.
    Lewis RW, Gethin DT, Yang XSS, Rowe RC (2005) A combined finite-discrete element method for simulating pharmaceutical powder tableting. Int J Numer Methods Eng 62:853–869zbMATHGoogle Scholar
  56. 56.
    Lewis RW, Schrefler BA (1998) The finite element method in the static & dynamic deformation & consolidation of porous media, 2nd edn. Wiley Press, New YorkzbMATHGoogle Scholar
  57. 57.
    Lewis RW, Schrefler BA, Simoni L (1992) Coupling versus uncoupling in soil consolidation. Int J Numer Anal Methods Geomech 15:533–548Google Scholar
  58. 58.
    Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 2005(98):011101Google Scholar
  59. 59.
    Macleod HA (2001) Thin flim optcal filters, 3rd edn. I. O. P, BristolGoogle Scholar
  60. 60.
    Martin P (2009) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, BostonGoogle Scholar
  61. 61.
    Michopoulos G, Farhat C, Fish J (2005) Survey on modeling and simulation of multiphysics systems. J Comput Inf Sci Eng 5(3):198–213Google Scholar
  62. 62.
    Martin P (2011) Introduction to surface engineering and functionally engineered materials. Scrivener and Elsevier, AmsterdamGoogle Scholar
  63. 63.
    Messier R, Giri AP, Roy R (1984) Revised structure zone for thin film physical structure. J Vac Sci Technol A2(2):500Google Scholar
  64. 64.
    Moelwyn-Hughes EA (1961) Physical chemistry. Pergamon Press, OxfordGoogle Scholar
  65. 65.
    Nakanishi H, Bishop KJM, Kowalczyk B, Nitzan A, Weiss EA, Tretiakov KV, Apodaca MM, Klajn R, Stoddart JF, Grzybowski BA (2009) Photoconductance and inverse photoconductance in thin films of functionalized metal nanoparticles. Nature 460:371–375Google Scholar
  66. 66.
    Niemz MH (2004) Laser tissue interactions-fundamentals and applications. Springer, BerlinGoogle Scholar
  67. 67.
    Onate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800zbMATHMathSciNetGoogle Scholar
  68. 68.
    Onate E, Celigueta MA, Idelsohn SR, Salazar F, Surez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48:307–318zbMATHMathSciNetGoogle Scholar
  69. 69.
    Park J-U, Hardy M, Kang SJ, Barton K, Adair K, Mukhopadhyay DK, Lee CY, Strano MS, Alleyne AG, Georgiadis JG, Ferreira PM, Rogers JA (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789Google Scholar
  70. 70.
    Park I, Ko SH, Pan H, Grigoropoulos CP, Pisano AP, Frechet JMJ, Lee ES, Jeong JH (2008) Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles. Adv Mater 20:489Google Scholar
  71. 71.
    Park KC, Felippa CA (1983) Partitioned analysis of coupled systems. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. Elsevier Science Publishers, North-HollandGoogle Scholar
  72. 72.
    Piperno S (1997) Explicit/implicit fluid/structure staggered procedures with a structural predictor & fluid subcycling for 2D inviscid aeroelastic simulations. Int J Numer Method Fluids 25:1207–1226Google Scholar
  73. 73.
    Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems—Part I: model problem, theory, and two-dimensional application. Comput Method Appl Mech Eng 124(1–2):79–112zbMATHMathSciNetGoogle Scholar
  74. 74.
    Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems—Part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190:3147–3170zbMATHGoogle Scholar
  75. 75.
    Pö schel T, Schwager T (2004) Computational granular dynamics. Springer, BerlinGoogle Scholar
  76. 76.
    Ransing RS, Lewis RW, Gethin DT (2004) Using a deformable discrete-element technique to model the compaction behaviour of mixed ductile and brittle particulate systems. Philos Trans R Soc 362(1822):1867–1884zbMATHGoogle Scholar
  77. 77.
    Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, CambridgeGoogle Scholar
  78. 78.
    Reich-Weiser C, Vijayaraghavan A, Dornfeld DA (2008) Metrics for manufacturing sustainability, Proceedings of IMSEC, ASME, Evanston, IL, Oct 7–10Google Scholar
  79. 79.
    Ridley BA, Nivi B, Jacobson JM (1999) All-inorganic field effect transistors fabricated by printing. Science 286:746–749Google Scholar
  80. 80.
    Rojek J, Labra C, Su O, Onate E (2012) Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int J Solids Struct 49:1497–1517. doi: 10.1016/j.ijsolstr.2012.02.032 Google Scholar
  81. 81.
    Rosen M, Dincer I, Kanoglu M (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36:128–137Google Scholar
  82. 82.
    Samarasinghe SR, Pastoriza-Santos I, Edirisinghe MJ, Reece MJ, Liz-Marzan LM (2006) Printing gold nanoparticles with an electrohydrodynamic direct write device. Gold Bull 39:48–53Google Scholar
  83. 83.
    Schlick T (2000) Molecular modeling & simulation. An interdisciplinary guide. Springer, New YorkGoogle Scholar
  84. 84.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126Google Scholar
  85. 85.
    Steen WM (1998) Laser material processing. Springer, BerlinGoogle Scholar
  86. 86.
    Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271Google Scholar
  87. 87.
    Tatzel H (1996) Grundlagen der Verarbeitungstechnik von EPP-Bewä hrte und neue Verfahren. Technical report of the BASF CompanyGoogle Scholar
  88. 88.
    Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882Google Scholar
  89. 89.
    Torquato S (2002) Random heterogeneous materials: microstructure & macroscopic properties. Springer, New YorkGoogle Scholar
  90. 90.
    Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H (2004) Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3:171–176Google Scholar
  91. 91.
    Wellmann C, Lillie C, Wriggers P (2008) A contact detection algorithm for superellipsoids based on the common-normal concept. Eng Comput 25:432–442zbMATHGoogle Scholar
  92. 92.
    Wellmann C, Lillie C, Wriggers P (2008) Homogenization of granular material modelled by a three-dimensional discrete element method. Comput Geotech 35:394–405Google Scholar
  93. 93.
    Wellmann C, Lillie C, Wriggers P (2008) Comparison of the macroscopic behavior of granular materials modeled by different constitutive equations on the microscale. Finite Elem Anal Des 44:259–271Google Scholar
  94. 94.
    Wellmann C, Wriggers P (2011) Homogenization of granular material modeled by a 3D DEM, particle-based methods: fundamentals and applications. In: Onate E, Owen DRJ (eds) pp 211–231Google Scholar
  95. 95.
    Wellmann C, Wriggers P (2012) A two-scale model of granular materials. Comput Method Appl Mech Eng 205–208:46–58MathSciNetGoogle Scholar
  96. 96.
    Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44:3888–3894Google Scholar
  97. 97.
    Wriggers P (2002) Computational contact mechanics. John-Wiley, ChichesterGoogle Scholar
  98. 98.
    Wriggers P (2008) Nonlinear finite element analysis. Springer, BerlinGoogle Scholar
  99. 99.
    Zienkiewicz OC (1984) Coupled problems & their numerical solution. In: Lewis RW, Bettes P, Hinton E (eds) Numerical methods in coupled systems. Wiley, Chichester, pp 35–58Google Scholar
  100. 100.
    Zienkiewicz OC, Paul DK, Chan AHC (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26:1039–1055zbMATHGoogle Scholar
  101. 101.
    Zohdi TI (2003) On the compaction of cohesive hyperelastic granules at finite strains. Proc Roy Soc 454(2034):1395–1401Google Scholar
  102. 102.
    Zohdi TI (2003b) Genetic optimization of statistically uncertain microheterogeneous solids. Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043zbMATHMathSciNetGoogle Scholar
  103. 103.
    Zohdi TI (2006) Computation of the coupled thermo-optical scattering properties of random particulate systems. Comput Methods Appl Mech Eng 195:5813–5830zbMATHGoogle Scholar
  104. 104.
    Zohdi TI, Kuypers FA (2006) Modeling and rapid simulation of multiple red blood cell light scattering. Proc R Soc Interface 3(11):823–831Google Scholar
  105. 105.
    Zohdi TI (2012) Modeling and simulation of the optical response rod-functionalized reflective surfaces. Comput Mech 50(2):257–268zbMATHMathSciNetGoogle Scholar
  106. 106.
    Zohdi TI (2013) Rapid simulation of laser processing of discrete particulate materials. Arch Comput Methods Eng. doi: 10.1007/s11831-013-9092-6. pp 1–17
  107. 107.
    Zohdi TI (2002) An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids. Int J Numer Methods Eng 53:1511–1532zbMATHMathSciNetGoogle Scholar
  108. 108.
    Zohdi TI (2005) Charge-induced clustering in multifield particulate flow. Int J Numer Methods Eng 62(7):870–898zbMATHMathSciNetGoogle Scholar
  109. 109.
    Zohdi TI (2007) Computation of strongly coupled multifield interaction in particle-fluid systems. Comput Methods Appl Mech Eng 196:3927–3950zbMATHMathSciNetGoogle Scholar
  110. 110.
    Zohdi TI, Wriggers P (2008) Introduction to computational micromechanics. Second Reprinting. Springer, Berlin Google Scholar
  111. 111.
    Zohdi TI (2010) On the dynamics of charged electromagnetic particulate jets. Arch Comput Methods Eng 17(2):109–135zbMATHMathSciNetGoogle Scholar
  112. 112.
    Zohdi TI (2010) Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput Methods Appl Mech Eng 199:79–101MathSciNetGoogle Scholar
  113. 113.
    Zohdi TI (2012) Electromagnetic properties of multiphase dielectrics. A primer on modeling, theory and computation. Springer, BerlinGoogle Scholar
  114. 114.
    Zohdi TI (2012) Dynamics of charged particulate systems. Modeling, theory and computation. Springer, BerlinGoogle Scholar
  115. 115.
    Zohdi TI (2013) Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J Comput Phys 233:509–526MathSciNetGoogle Scholar
  116. 116.
    Zohdi TI (2014) A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math Mech Solids. doi: 10.1007/s11831-013-9092-6. pp 1–21

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations