Advertisement

Computational Mechanics

, Volume 54, Issue 2, pp 193–211 | Cite as

Computational engineering analysis with the new-generation space–time methods

  • Kenji TakizawaEmail author
Review Paper

Abstract

This is an overview of the new directions we have taken the space–time (ST) methods in bringing solution and analysis to different classes of computationally challenging engineering problems. The classes of problems we have focused on include bio-inspired flapping-wing aerodynamics, wind-turbine aerodynamics, and cardiovascular fluid mechanics. The new directions for the ST methods include the variational multiscale version of the Deforming-Spatial-Domain/Stabilized ST method, using NURBS basis functions in temporal representation of the unknown variables and motion of the solid surfaces and fluid meshes, ST techniques with continuous representation in time, and ST interface-tracking with topology change. We describe the new directions and present examples of the challenging problems solved.

Keywords

Bio-inspired flapping-wing aerodynamics MAV Wind-turbine aerodynamics Cardiovascular fluid mechanics Space–time methods DSD/SST method ST-SUPS method ST-VMS method NURBS in time STNMUM ST with continuous temporal representation ST-C ST with topology change ST-TC 

Notes

Acknowledgments

This work was supported in part by Rice–Waseda Research Agreement.

References

  1. 1.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009–3019zbMATHGoogle Scholar
  3. 3.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27:599–621MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetzbMATHGoogle Scholar
  5. 5.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid-structure interaction. Comput Mech 38:403–416zbMATHGoogle Scholar
  6. 6.
    Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) “Extending the range of applicability of the loose coupling approach for FSI simulations”, in H.-J. Bungartz and M. Schafer, editors, Fluid-structure interaction, volume 53 of Lecture notes in computational science and engineering, 82–100, Springer, DordrechtGoogle Scholar
  7. 7.
    Bletzinger K-U, Wuchner R, Kupzok A (2006) “Algorithmic treatment of shells and free form-membranes in FSI”, in H.-J. Bungartz and M. Schafer, editors, Fluid-structure interaction, volume 53 of Lecture notes in computational science and engineering, 336–355, Springer, DordrechtGoogle Scholar
  8. 8.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction. Comput Mech 43:81–90zbMATHGoogle Scholar
  10. 10.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik (2000) left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetzbMATHGoogle Scholar
  12. 12.
    Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46:185–197MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498Google Scholar
  15. 15.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. doi: 10.1002/fld.2400 zbMATHGoogle Scholar
  16. 16.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253zbMATHGoogle Scholar
  17. 17.
    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetGoogle Scholar
  19. 19.
    Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid-structure interaction computations using elements without mid-side nodes. Comput Mech 48:269–276. doi: 10.1007/s00466-011-0620-7 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22:1230002. doi: 10.1142/S0218202512300025 Google Scholar
  21. 21.
    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905Google Scholar
  22. 22.
    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput Mech 50:499–511MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833MathSciNetzbMATHGoogle Scholar
  24. 24.
    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727zbMATHGoogle Scholar
  25. 25.
    Minami S, Kawai H, Yoshimura S (2012) Parallel BDD-based monolithic approach for acoustic fluid-structure interaction. Comput Mech 50:707–718MathSciNetzbMATHGoogle Scholar
  26. 26.
    Miras T, Schotte J-S, Ohayon R (2012) Energy approach for static and linearized dynamic studies of elastic structures containing incompressible liquids with capillarity: a theoretical formulation. Comput Mech 50:729–741MathSciNetzbMATHGoogle Scholar
  27. 27.
    van Opstal TM, van Brummelen EH, de Borst R, Lewis MR (2012) A finite-element/boundary-element method for large-displacement fluid-structure interaction. Comput Mech 50:779–788MathSciNetzbMATHGoogle Scholar
  28. 28.
    Yao JY, Liu GR, Narmoneva DA, Hinton RB, Zhang Z-Q (2012) Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves. Comput Mech 50:789–804Google Scholar
  29. 29.
    Larese A, Rossi R, Onate E, Idelsohn SR (2012) A coupled PFEM–Eulerian approach for the solution of porous FSI problems. Comput Mech 50:805–819Google Scholar
  30. 30.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New YorkGoogle Scholar
  31. 31.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid-structure interaction. Math Models Methods Appl Sci 23:215–221. doi: 10.1142/S0218202513400010
  32. 32.
    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23: 249–272Google Scholar
  33. 33.
    Yao JY, Liu GR, Qian D, Chen CL, Xu GX (2013) A moving-mesh gradient smoothing method for compressible CFD problems. Math Models Methods Appl Sci 23:273–305Google Scholar
  34. 34.
    Kamran K, Rossi R, Onate E, Idelsohn SR (2013) A compressible Lagrangian framework for modeling the fluid-structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23:339–367MathSciNetzbMATHGoogle Scholar
  35. 35.
    Hsu M-C, Akkerman I, Bazilevs Y (2013) “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, published online, doi: 10.1002/we.1599
  36. 36.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetzbMATHGoogle Scholar
  38. 38.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetzbMATHGoogle Scholar
  39. 39.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575. doi: 10.1002/fld.505 MathSciNetzbMATHGoogle Scholar
  40. 40.
    Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods in Fluids 54:855–900. doi: 10.1002/fld.1430 MathSciNetzbMATHGoogle Scholar
  41. 41.
    Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Comput Mech 48:247–267. doi: 10.1007/s00466-011-0571-z MathSciNetzbMATHGoogle Scholar
  42. 42.
    Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22:1230001. doi: 10.1142/S0218202512300013 MathSciNetGoogle Scholar
  43. 43.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. doi: 10.1007/s00466-008-0261-7 zbMATHGoogle Scholar
  44. 44.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36. doi: 10.1109/2.237441 Google Scholar
  45. 45.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94. doi: 10.1016/0045-7825(94)00077-8 zbMATHGoogle Scholar
  46. 46.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130. doi: 10.1007/BF02897870 zbMATHGoogle Scholar
  47. 47.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63. doi: 10.1115/1.1530635 zbMATHGoogle Scholar
  48. 48.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032. doi: 10.1016/j.cma.2003.12.046 zbMATHGoogle Scholar
  49. 49.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412. doi: 10.1007/BF00350249 zbMATHGoogle Scholar
  50. 50.
    Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid-structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142. doi: 10.1007/s00466-008-0260-8 zbMATHGoogle Scholar
  51. 51.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi: 10.1002/fld.2221 zbMATHGoogle Scholar
  52. 52.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364. doi: 10.1007/s00466-011-0590-9 zbMATHGoogle Scholar
  53. 53.
    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125–169. doi: 10.1007/s11831-012-9070-4 MathSciNetGoogle Scholar
  54. 54.
    Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854. doi: 10.1007/s00466-012-0761-3 zbMATHGoogle Scholar
  55. 55.
    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338. doi: 10.1142/S0218202513400058 MathSciNetzbMATHGoogle Scholar
  56. 56.
    Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364. doi: 10.1007/s00466-013-0880-5 zbMATHGoogle Scholar
  57. 57.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760. doi: 10.1007/s00466-012-0759-x zbMATHGoogle Scholar
  58. 58.
    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778. doi: 10.1007/s00466-012-0758-y zbMATHGoogle Scholar
  59. 59.
    Takizawa K, Tezduyar TE, Kostov N (2014) “Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV”, Comput Mech, to appear, doi: 10.1007/s00466-014-0980-x
  60. 60.
    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. doi: 10.1007/s00466-013-0888-x zbMATHGoogle Scholar
  61. 61.
    Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput & Fluids 36:2–11. doi: 10.1016/j.compfluid.2005.07.008 zbMATHGoogle Scholar
  62. 62.
    Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) for flows with fluid-solid and fluid-fluid interfaces. Int J Numer Methods Fluids 54:1021–1030. doi: 10.1002/fld.1498 zbMATHGoogle Scholar
  63. 63.
    Wick T (2013) Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations. Comput Mech 52:1113–1124MathSciNetzbMATHGoogle Scholar
  64. 64.
    Mittal S, Tezduyar TE (1992) Notes on the stabilized space-time finite element formulation of unsteady incompressible flows. Comput Phys Commun 73:93–112. doi: 10.1016/0010-4655(92)90031-S Google Scholar
  65. 65.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177. doi: 10.1016/0045-7825(94)00082-4 zbMATHGoogle Scholar
  66. 66.
    Wren GP, Ray SE, Aliabadi SK, Tezduyar TE (1997) Simulation of flow problems with moving mechanical components, fluid-structure interactions and two-fluid interfaces. Int J Numer Methods Fluids 24:1433–1448. doi: 10.1002/(SICI)1097-0363(199706)24:12<1433:AID-FLD568>3.3.CO;2-L
  67. 67.
    Tezduyar TE (1999) CFD methods for three-dimensional computation of complex flow problems. J Wind Eng Ind Aerodyn 81:97–116. doi: 10.1016/S0167-6105(99)00011-2 Google Scholar
  68. 68.
    Guler I, Behr M, Tezduyar T (1999) Parallel finite element computation of free-surface flows. Comput Mech 23:117–123. doi: 10.1007/s004660050391 Google Scholar
  69. 69.
    Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195:2983–3000. doi: 10.1016/j.cma.2004.09.018 MathSciNetzbMATHGoogle Scholar
  70. 70.
    Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15:1073–1118. doi: 10.1002/fld.1650150911 Google Scholar
  71. 71.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112:253–282. doi: 10.1016/0045-7825(94)90029-9 MathSciNetzbMATHGoogle Scholar
  72. 72.
    Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21:783–805. doi: 10.1002/fld.1650211003 MathSciNetzbMATHGoogle Scholar
  73. 73.
    Kalro V, Aliabadi S, Garrard W, Tezduyar T, Mittal S, Stein K (1997) Parallel finite element simulation of large ram-air parachutes. Int J Numer Methods Fluids 24:1353–1369. doi: 10.1002/(SICI)1097-0363(199706)24:12<1353:AID-FLD564>3.0.CO;2-6 zbMATHGoogle Scholar
  74. 74.
    Tezduyar T, Kalro V, Garrard W (1997) Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes. Parallel Comput 23:1349–1363. doi: 10.1016/S0167-8191(97)00057-4 MathSciNetzbMATHGoogle Scholar
  75. 75.
    Tezduyar T, Osawa Y (1999) Methods for parallel computation of complex flow problems. Parallel Comput 25:2039–2066. doi: 10.1016/S0167-8191(99)00080-0 MathSciNetGoogle Scholar
  76. 76.
    Tezduyar T, Osawa Y (2001) The Multi-Domain Method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:705–716. doi: 10.1016/S0045-7825(01)00310-3 zbMATHGoogle Scholar
  77. 77.
    Ray SE, Tezduyar TE (2000) Fluid-object interactions in interior ballistics. Comput Methods Appl Mech Eng 190:363–372. doi: 10.1016/S0045-7825(00)00207-3 zbMATHGoogle Scholar
  78. 78.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—Fluid-structure interactions. Int J Numer Methods Fluids 21:933–953. doi: 10.1002/fld.1650211011 zbMATHGoogle Scholar
  79. 79.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi: 10.1115/1.4005073 Google Scholar
  80. 80.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput & Fluids 85:125–134. doi: 10.1016/j.compfluid.2012.11.008 MathSciNetzbMATHGoogle Scholar
  81. 81.
    Behr M, Tezduyar T (1999) The Shear-Slip Mesh Update Method. Comput Methods Appl Mech Eng 174:261–274. doi: 10.1016/S0045-7825(98)00299-0 zbMATHGoogle Scholar
  82. 82.
    Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–3200. doi: 10.1016/S0045-7825(00)00388-1 zbMATHGoogle Scholar
  83. 83.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344. doi: 10.1007/s00466-011-0589-2 zbMATHGoogle Scholar
  84. 84.
    Aliabadi SK, Tezduyar TE (1993) Space-time finite element computation of compressible flows involving moving boundaries and interfaces. Comput Methods Appl Mech Eng 107:209–223. doi: 10.1016/0045-7825(93)90176-X zbMATHGoogle Scholar
  85. 85.
    Wren GP, Ray SE, Aliabadi SK, Tezduyar TE (1995) Space-time finite element computation of compressible flows between moving components. Int J Numer Methods Fluids 21:981–991. doi: 10.1002/fld.1650211015 zbMATHGoogle Scholar
  86. 86.
    Ray SE, Wren GP, Tezduyar TE (1997) Parallel implementations of a finite element formulation for fluid-structure interactions in interior flows. Parallel Comput 23:1279–1292. doi: 10.1016/S0167-8191(97)00053-7 MathSciNetzbMATHGoogle Scholar
  87. 87.
    Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2010) Space-time SUPG formulation of the shallow-water equations. Int J Numer Methods Fluids 64:1379–1394. doi: 10.1002/fld.2464 MathSciNetzbMATHGoogle Scholar
  88. 88.
    Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space-time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48:293–306. doi: 10.1007/s00466-011-0618-1 MathSciNetzbMATHGoogle Scholar
  89. 89.
    Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373. doi: 10.1016/0045-7825(95)00988-4 MathSciNetzbMATHGoogle Scholar
  90. 90.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C
  91. 91.
    Johnson AA, Tezduyar TE (1997) 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321. doi: 10.1016/S0045-7825(96)01223-6 zbMATHGoogle Scholar
  92. 92.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143. doi: 10.1007/s004660050393 zbMATHGoogle Scholar
  93. 93.
    Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190:3201–3221. doi: 10.1016/S0045-7825(00)00389-3 zbMATHGoogle Scholar
  94. 94.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. doi: 10.1016/S0045-7825(00)00204-8 zbMATHGoogle Scholar
  95. 95.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid-structure interactions: 3-D Computation. Comput Methods Appl Mech Eng 190:373–386. doi: 10.1016/S0045-7825(00)00208-5 zbMATHGoogle Scholar
  96. 96.
    Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726. doi: 10.1016/S0045-7825(01)00311-5 zbMATHGoogle Scholar
  97. 97.
    Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid-structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191:673–687. doi: 10.1016/S0045-7825(01)00312-7 zbMATHGoogle Scholar
  98. 98.
    Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid-structure interactions of a round parachute: modeling and simulation techniques. J Aircr 38:800–808. doi: 10.2514/2.2864 Google Scholar
  99. 99.
    Stein K, Tezduyar T, Kumar V, Sathe S, Benney R, Thornburg E, Kyle C, Nonoshita T (2003) Aerodynamic interactions between parachute canopies. J Appl Mech 70:50–57. doi: 10.1115/1.1530634 zbMATHGoogle Scholar
  100. 100.
    Stein K, Tezduyar T, Benney R (2003) Computational methods for modeling parachute systems. Comput Sci Eng 5:39–46. doi: 10.1109/MCISE.2003.1166551 Google Scholar
  101. 101.
    Tezduyar TE, Sathe S (2004) Enhanced-discretization space-time technique (EDSTT). Comput Methods Appl Mech Eng 193:1385–1401. doi: 10.1016/j.cma.2003.12.029 MathSciNetzbMATHGoogle Scholar
  102. 102.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. doi: 10.1016/j.cma.2004.09.014 MathSciNetzbMATHGoogle Scholar
  103. 103.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743–5753. doi: 10.1016/j.cma.2005.08.023 MathSciNetzbMATHGoogle Scholar
  104. 104.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid-structure interactions with the Deforming-Spatial-Domain/Stabilized Space-Time formulation. Comput Methods Appl Mech Eng 195:1885–1895. doi: 10.1016/j.cma.2005.05.050 MathSciNetzbMATHGoogle Scholar
  105. 105.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38:482–490. doi: 10.1007/s00466-006-0065-6 zbMATHGoogle Scholar
  106. 106.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput & Fluids 36:191–206. doi: 10.1016/j.compfluid.2005.02.011 MathSciNetzbMATHGoogle Scholar
  107. 107.
    Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput & Fluids 36:207–223. doi: 10.1016/j.compfluid.2005.02.010 MathSciNetzbMATHGoogle Scholar
  108. 108.
    Tezduyar TE, Sameh A (2006) Parallel finite element computations in fluid mechanics. Comput Methods Appl Mech Eng 195:1872–1884. doi: 10.1016/j.cma.2005.05.038 MathSciNetzbMATHGoogle Scholar
  109. 109.
    Stein K, Tezduyar TE, Sathe S, Benney R, Charles R (2005) Fluid-structure interaction modeling of parachute soft-landing dynamics. Int J Numer Methods Fluids 47:619–631. doi: 10.1002/fld.835 MathSciNetzbMATHGoogle Scholar
  110. 110.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901–922. doi: 10.1002/fld.1443 MathSciNetzbMATHGoogle Scholar
  111. 111.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput & Fluids 36:160–168. doi: 10.1016/j.compfluid.2005.07.014 zbMATHGoogle Scholar
  112. 112.
    Sathe S, Benney R, Charles R, Doucette E, Miletti J, Senga M, Stein K, Tezduyar TE (2007) Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques. Comput & Fluids 36:127–135. doi: 10.1016/j.compfluid.2005.07.010 zbMATHGoogle Scholar
  113. 113.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. Int J Numer Methods Fluids 57:601–629. doi: 10.1002/fld.1633 MathSciNetzbMATHGoogle Scholar
  114. 114.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54:995–1009. doi: 10.1002/fld.1497 MathSciNetzbMATHGoogle Scholar
  115. 115.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43:73–80. doi: 10.1007/s00466-008-0276-0 MathSciNetzbMATHGoogle Scholar
  116. 116.
    Sathe S, Tezduyar TE (2008) Modeling of fluid-structure interactions with the space-time finite elements: contact problems. Comput Mech 43:51–60. doi: 10.1007/s00466-008-0299-6 MathSciNetzbMATHGoogle Scholar
  117. 117.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151–159. doi: 10.1007/s00466-008-0325-8 zbMATHGoogle Scholar
  118. 118.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetzbMATHGoogle Scholar
  119. 119.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198:3613–3621. doi: 10.1016/j.cma.2008.08.020 MathSciNetzbMATHGoogle Scholar
  120. 120.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in the computation of incompressible flows. J Appl Mech 76:021204. doi: 10.1115/1.3059576 Google Scholar
  121. 121.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116. doi: 10.1002/cnm.1241 zbMATHGoogle Scholar
  122. 122.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetzbMATHGoogle Scholar
  123. 123.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech 46:31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetzbMATHGoogle Scholar
  124. 124.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26:336–347. doi: 10.1002/cnm.1289 MathSciNetzbMATHGoogle Scholar
  125. 125.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89. doi: 10.1007/s00466-009-0426-z zbMATHGoogle Scholar
  126. 126.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid-structure interaction modeling of aneurysms. Comput Mech 46:43–52. doi: 10.1007/s00466-009-0439-7 zbMATHGoogle Scholar
  127. 127.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65:271–285. doi: 10.1002/fld.2348 zbMATHGoogle Scholar
  128. 128.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323. doi: 10.1002/fld.2360 zbMATHGoogle Scholar
  129. 129.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid-structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307. doi: 10.1002/fld.2359 zbMATHGoogle Scholar
  130. 130.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65:135–149. doi: 10.1002/fld.2415 MathSciNetzbMATHGoogle Scholar
  131. 131.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid-structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65:324–340. doi: 10.1002/fld.2448 zbMATHGoogle Scholar
  132. 132.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710. doi: 10.1002/cnm.1433 MathSciNetzbMATHGoogle Scholar
  133. 133.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384. doi: 10.1007/s00466-011-0619-0 zbMATHGoogle Scholar
  134. 134.
    Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79:010907. doi: 10.1115/1.4005070 Google Scholar
  135. 135.
    Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908. doi: 10.1115/1.4005071 Google Scholar
  136. 136.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225. doi: 10.1007/s11831-012-9071-3 MathSciNetGoogle Scholar
  137. 137.
    Takizawa K, Tezduyar TE (2012) Bringing them down safely. Mech Eng 134:34–37Google Scholar
  138. 138.
    Takizawa K, Tezduyar TE, Buscher A, Asada S (2013) “Space-time interface-tracking with topology change (ST-TC)”, Comput Mech, October 2013, doi: 10.1007/s00466-013-0935-7
  139. 139.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetzbMATHGoogle Scholar
  140. 140.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242. doi: 10.1016/0045-7825(92)90141-6 zbMATHGoogle Scholar
  141. 141.
    Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401zbMATHGoogle Scholar
  142. 142.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799Google Scholar
  143. 143.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetzbMATHGoogle Scholar
  144. 144.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414MathSciNetzbMATHGoogle Scholar
  145. 145.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657. doi: 10.1007/s00466-011-0614-5 Google Scholar
  146. 146.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195Google Scholar
  147. 147.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150MathSciNetzbMATHGoogle Scholar
  148. 148.
    Takizawa K, Tezduyar TE (2014) Space-time computation techniques with continuous representation in time (ST-C). Comput Mech 53:91–99. doi: 10.1007/s00466-013-0895-y MathSciNetzbMATHGoogle Scholar
  149. 149.
    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284. doi: 10.1016/0045-7825(84)90157-9 MathSciNetzbMATHGoogle Scholar
  150. 150.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325. doi: 10.1016/0045-7825(86)90003-4 zbMATHGoogle Scholar
  151. 151.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99MathSciNetzbMATHGoogle Scholar
  152. 152.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430. doi: 10.1016/S0045-7825(00)00211-5 zbMATHGoogle Scholar
  153. 153.
    Tezduyar TE, Ganjoo DK (1986) Petrov–Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection-diffusion problems. Comput Methods Appl Mech Eng 59:49–71. doi: 10.1016/0045-7825(86)90023-X zbMATHGoogle Scholar
  154. 154.
    Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422. doi: 10.1016/0045-7825(93)90033-T zbMATHGoogle Scholar
  155. 155.
    Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70:2–9. doi: 10.1115/1.1526569 zbMATHGoogle Scholar
  156. 156.
    Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193:1909–1922. doi: 10.1016/j.cma.2003.12.050 zbMATHGoogle Scholar
  157. 157.
    Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632. doi: 10.1016/j.cma.2005.05.032 MathSciNetzbMATHGoogle Scholar
  158. 158.
    Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-capturing. Comput & Fluids 36:147–159. doi:  10.1016/j.compfluid.2005.07.009 zbMATHGoogle Scholar
  159. 159.
    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta \) shock-capturing. Comput Mech 38:469–481. doi:  10.1007/s00466-005-0025-6 zbMATHGoogle Scholar
  160. 160.
    Tezduyar TE, Sathe S (2006) Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38:456–468. doi: 10.1007/s00466-006-0056-7 zbMATHGoogle Scholar
  161. 161.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476. doi: 10.1002/cnm.759 Google Scholar
  162. 162.
    Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38:334–343. doi: 10.1007/s00466-006-0033-1 Google Scholar
  163. 163.
    Onate E, Valls A, Garcia J (2006) FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers. Comput Mech 38:440–455zbMATHGoogle Scholar
  164. 164.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364. doi: 10.1007/s00466-006-0045-x MathSciNetzbMATHGoogle Scholar
  165. 165.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput & Fluids 36:121–126. doi: 10.1016/j.compfluid.2005.07.004 zbMATHGoogle Scholar
  166. 166.
    Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57:1189–1209. doi: 10.1002/fld.1743 MathSciNetzbMATHGoogle Scholar
  167. 167.
    Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZ\(\beta \) shock-capturing. Int J Numer Methods Fluids 54:695–706. doi:  10.1002/fld.1447 MathSciNetzbMATHGoogle Scholar
  168. 168.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ\(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608. doi:  10.1002/fld.1484 MathSciNetzbMATHGoogle Scholar
  169. 169.
    Corsini A, Menichini C, Rispoli F, Santoriello A, Tezduyar TE (2009) A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms. J Appl Mech 76:021211. doi: 10.1115/1.3062967 Google Scholar
  170. 170.
    Rispoli F, Saavedra R, Menichini F, Tezduyar TE (2009) Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ\(\beta \) shock-capturing. J Appl Mech 76:021209. doi:  10.1115/1.3057496 Google Scholar
  171. 171.
    Hughes TJR, Scovazzi G, Tezduyar TE (2010) Stabilized methods for compressible flows. J Sci Comput 43:343–368. doi: 10.1007/s10915-008-9233-5 Google Scholar
  172. 172.
    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46:159–167. doi: 10.1007/s00466-009-0441-0 MathSciNetzbMATHGoogle Scholar
  173. 173.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840. doi: 10.1016/j.cma.2009.06.019 MathSciNetzbMATHGoogle Scholar
  174. 174.
    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65:254–270. doi: 10.1002/fld.2451 MathSciNetzbMATHGoogle Scholar
  175. 175.
    Corsini A, Rispoli F, Tezduyar TE (2012) Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique. J Appl Mech 79:010910. doi: 10.1115/1.4005060 Google Scholar
  176. 176.
    Corsini A, Rispoli F, Sheard AG, Tezduyar TE (2012) Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations. Comput Mech 50:695–705. doi: 10.1007/s00466-012-0789-4 MathSciNetzbMATHGoogle Scholar
  177. 177.
    Kler PA, Dalcin LD, Paz RR, Tezduyar TE (2013) SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Comput Mech 51:171–185. doi: 10.1007/s00466-012-0712-z MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan

Personalised recommendations