Advertisement

Computational Mechanics

, Volume 54, Issue 2, pp 213–233 | Cite as

Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV

  • Kenji Takizawa
  • Tayfun E. Tezduyar
  • Nikolay Kostov
Original Paper

Abstract

We present a sequentially-coupled space–time (ST) computational fluid–structure interaction (FSI) analysis of flapping-wing aerodynamics of a micro aerial vehicle (MAV). The wing motion and deformation data, whether prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel. The core computational FSI technology is based on the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) formulation. This is supplemented with using NURBS basis functions in temporal representation of the wing and mesh motion, and in remeshing. Here we use the version of the DSD/SST formulation derived in conjunction with the variational multiscale (VMS) method, and this version is called “DSD/SST-VMST.” The structural mechanics computations are based on the Kirchhoff–Love shell model. The sequential-coupling technique is applicable to some classes of FSI problems, especially those with temporally-periodic behavior. We show that it performs well in FSI computations of the flapping-wing aerodynamics we consider here. In addition to the straight-flight case, we analyze cases where the MAV body has rolling, pitching, or rolling and pitching motion. We study how all these influence the lift and thrust.

Keywords

Micro aerial vehicle Bio-inspired flapping Locust Fluid–structure interaction Space–time techniques NURBS Sequential coupling 

Notes

Acknowledgments

This work was supported in part by the Rice–Waseda research agreement (first author) and ARO Grant W911NF-12-1-0162 (second and third authors).

References

  1. 1.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi: 10.1115/1.4005073 CrossRefGoogle Scholar
  2. 2.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575. doi: 10.1002/fld.505 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900. doi: 10.1002/fld.1430 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267. doi: 10.1007/s00466-011-0571-z MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Mathe Models Methods Appl Sci 22:1230001. doi: 10.1142/S0218202512300013 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. WileyGoogle Scholar
  10. 10.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95:221–242. doi: 10.1016/0045-7825(92)90141-6 CrossRefzbMATHGoogle Scholar
  12. 12.
    Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401CrossRefzbMATHGoogle Scholar
  13. 13.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799CrossRefGoogle Scholar
  14. 14.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural–acoustic and hydroelastic–sloshing systems. Comput Methods Appl Mech Eng 190:3009–3019CrossRefzbMATHGoogle Scholar
  18. 18.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27:599–621MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid-structure interaction. Comput Mech 38:403–416CrossRefzbMATHGoogle Scholar
  21. 21.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43:81–90CrossRefzbMATHGoogle Scholar
  23. 23.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2000) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(2009):3534–3550MathSciNetGoogle Scholar
  24. 24.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRefGoogle Scholar
  27. 27.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. doi: 10.1002/fld.2400 CrossRefzbMATHGoogle Scholar
  28. 28.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253CrossRefzbMATHGoogle Scholar
  29. 29.
    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elements Anal Design 47:593–599MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48:269–276. doi: 10.1007/s00466-011-0620-7 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci 22:1230002. doi: 10.1142/S0218202512300025 CrossRefGoogle Scholar
  33. 33.
    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905CrossRefGoogle Scholar
  34. 34.
    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput Mech 50:499–511MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRefzbMATHGoogle Scholar
  37. 37.
    Minami S, Kawai H, Yoshimura S (2012) Parallel BDD-based monolithic approach for acoustic fluid–structure interaction. Comput Mech 50:707–718MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Miras T, Schotte J-S, Ohayon R (2012) Energy approach for static and linearized dynamic studies of elastic structures containing incompressible liquids with capillarity: a theoretical formulation. Comput Mech 50:729–741MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    van Opstal TM, van Brummelen EH, de Borst R, Lewis MR (2012) A finite-element/boundary-element method for large-displacement fluid–structure interaction. Comp Mech 50:779–788CrossRefzbMATHGoogle Scholar
  40. 40.
    Yao JY, Liu GR, Narmoneva DA, Hinton RB, Zhang Z-Q (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 50:789–804MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Larese A, Rossi R, Onate E, Idelsohn SR (2012) A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Comput Mech 50:805–819MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221. doi: 10.1142/S0218202513400010 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Yao JY, Liu GR, Qian D, Chen CL, Xu GX (2013) A moving-mesh gradient smoothing method for compressible CFD problems. Math Models Methods Appl Sci 23:273–305MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Kamran K, Rossi R, Onate E, Idelsohn SR (2013) A compressible Lagrangian framework for modeling the fluid–structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23:339–367MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Hsu M-C, Akkerman I, Bazilevs Y (2013) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy. doi: 10.1002/we.1599
  47. 47.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36. doi: 10.1109/2.237441 CrossRefGoogle Scholar
  48. 48.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94. doi: 10.1016/0045-7825(94)00077-8 CrossRefzbMATHGoogle Scholar
  49. 49.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130. doi: 10.1007/BF02897870 CrossRefzbMATHGoogle Scholar
  50. 50.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412. doi: 10.1007/BF00350249 CrossRefzbMATHGoogle Scholar
  51. 51.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344. doi: 10.1007/s00466-011-0589-2 CrossRefzbMATHGoogle Scholar
  52. 52.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657. doi: 10.1007/s00466-011-0614-5 CrossRefzbMATHGoogle Scholar
  53. 53.
    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. doi: 10.1007/s00466-013-0888-x CrossRefzbMATHGoogle Scholar
  54. 54.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—Fluid–structure interactions. Int J Numer Methods Fluids 21:933–953. doi: 10.1002/fld.1650211011 CrossRefzbMATHGoogle Scholar
  55. 55.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. doi: 10.1016/S0045-7825(00)00204-8 CrossRefzbMATHGoogle Scholar
  56. 56.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726. doi: 10.1016/S0045-7825(01)00311-5 CrossRefzbMATHGoogle Scholar
  57. 57.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. doi: 10.1016/j.cma.2004.09.014 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. doi: 10.1007/s00466-008-0261-7 CrossRefzbMATHGoogle Scholar
  59. 59.
    Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142. doi: 10.1007/s00466-008-0260-8 CrossRefzbMATHGoogle Scholar
  60. 60.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43:51–60. doi: 10.1007/s00466-008-0299-6 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151–159. doi: 10.1007/s00466-008-0325-8 CrossRefzbMATHGoogle Scholar
  62. 62.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89. doi: 10.1007/s00466-009-0426-z CrossRefzbMATHGoogle Scholar
  65. 65.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46:43–52. doi: 10.1007/s00466-009-0439-7 CrossRefzbMATHGoogle Scholar
  66. 66.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi: 10.1002/fld.2221 CrossRefzbMATHGoogle Scholar
  67. 67.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364. doi: 10.1007/s00466-011-0590-9 CrossRefzbMATHGoogle Scholar
  68. 68.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384. doi: 10.1007/s00466-011-0619-0 CrossRefzbMATHGoogle Scholar
  69. 69.
    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169. doi: 10.1007/s11831-012-9070-4 MathSciNetCrossRefGoogle Scholar
  70. 70.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225. doi: 10.1007/s11831-012-9071-3 MathSciNetCrossRefGoogle Scholar
  71. 71.
    Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854. doi: 10.1007/s00466-012-0761-3 CrossRefzbMATHGoogle Scholar
  72. 72.
    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338. doi: 10.1142/S0218202513400058 MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364. doi: 10.1007/s00466-013-0880-5 CrossRefzbMATHGoogle Scholar
  74. 74.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760. doi: 10.1007/s00466-012-0759-x CrossRefzbMATHGoogle Scholar
  77. 77.
    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778. doi: 10.1007/s00466-012-0758-y CrossRefzbMATHGoogle Scholar
  78. 78.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134. doi: 10.1016/j.compfluid.2012.11.008 Google Scholar
  79. 79.
    Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics, Vol 3: fluids, Chapter 17. WileyGoogle Scholar
  80. 80.
    Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36:207–223. doi: 10.1016/j.compfluid.2005.02.010 Google Scholar
  81. 81.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65:271–285. doi: 10.1002/fld.2348 CrossRefzbMATHGoogle Scholar
  82. 82.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307. doi: 10.1002/fld.2359 CrossRefzbMATHGoogle Scholar
  83. 83.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57:601–629. doi: 10.1002/fld.1633 MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914CrossRefzbMATHGoogle Scholar
  86. 86.
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416CrossRefzbMATHGoogle Scholar
  87. 87.
    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRefGoogle Scholar
  88. 88.
    Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices, Comput Mech. doi: 10.1007/s00466-013-0858-3
  89. 89.
    Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2013) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech. doi: 10.1007/s00466-013-0931-y
  90. 90.
    Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comp 20:359–392MathSciNetCrossRefGoogle Scholar
  92. 92.
    Combes SA, Daniel TL (2003) Flexural stiffness in insect wings: I. Scaling and the influence of wing venation. J Exp Biol 206:2979–2987CrossRefGoogle Scholar
  93. 93.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics withimproved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Tayfun E. Tezduyar
    • 2
  • Nikolay Kostov
    • 2
  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations