Computational Mechanics

, Volume 54, Issue 4, pp 943–953 | Cite as

Patient-specific analysis of post-operative aortic hemodynamics: a focus on thoracic endovascular repair (TEVAR)

  • F. Auricchio
  • M. ContiEmail author
  • A. Lefieux
  • S. Morganti
  • A. Reali
  • F. Sardanelli
  • F. Secchi
  • S. Trimarchi
  • A. Veneziani
Original Paper


The purpose of this study is to quantitatively evaluate the impact of endovascular repair on aortic hemodynamics. The study addresses the assessment of post-operative hemodynamic conditions of a real clinical case through patient-specific analysis, combining accurate medical image analysis and advanced computational fluid-dynamics (CFD). Although the main clinical concern was firstly directed to the endoluminal protrusion of the prosthesis, the CFD simulations have demonstrated that there are two other important areas where the local hemodynamics is impaired and a disturbed blood flow is present: the first one is the ostium of the subclavian artery, which is partially closed by the graft; the second one is the stenosis of the distal thoracic aorta. Besides the clinical relevance of these specific findings, this study highlights how CFD analyses allow to observe important flow effects resulting from the specific features of patient vessel geometries. Consequently, our results demonstrate the potential impact of computational biomechanics not only on the basic knowledge of physiopathology, but also on the clinical practice, thanks to a quantitative extraction of knowledge made possible by merging medical data and mathematical models.


Computational fluid dynamics (CFD) Biomechanics Aorta Endograft Patient-specific 



This work is partially funded by: the Cariplo Foundation through the Project no. 2009.2822; ERC Starting Grant through the Project ISOBIO: Isogeometric Methods for Biomechanics (No. 259229); Ministero dell’Istruzione, dell’Università e della Ricerca through the Project no. 2010BFXRHS. The authors would like to acknowledge: Dr. T. Passerini for the support regarding the computational analysis; MD Matteo Pegorer, MD Jip Tolenaar, and MD G. H. W. van Bogerijen for the support regarding the data collection and clinical considerations; S. Marconi and Dr. M. Piccinelli for the support regarding the medical image elaboration. Moreover, Regione Lombardia and CINECA Consortium through a LISA Initiative (Laboratory for Interdisciplinary Advanced Simulation) 2013 grant are gratefully acknowledged.

Conflict of interest

The authors have no commercial, proprietary, or financial interest in any products or companies described in this paper.


  1. 1.
    Antiga L (2012) VMTK:Vascular Modeling Toolkit. Accessed 1 May 2013.
  2. 2.
    Auricchio F, Conti M, Marconi S, Reali A, Tolenaar JL, Trimarchi S (2013) Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput Biol Med 43(4):386–394. doi: 10.1016/j.compbiomed.2013.01.006. URL Google Scholar
  3. 3.
    Canaud L, Alric P, Desgranges P, Marzelle J, Marty-Ané C, Becquemin JP (2010) Factors favoring stent-graft collapse after thoracic endovascular aortic repair. J Thorac Cardiovasc Surg 139(5):1153–1157CrossRefGoogle Scholar
  4. 4.
    Cheng SW, Lam ES, Fung GS, Ho P, Ting AC, Chow KW (2008) A computational fluid dynamic study of stent graft remodeling after endovascular repair of thoracic aortic dissections. J Vasc Surg 48(2):303–310CrossRefGoogle Scholar
  5. 5.
    Chiastra C, Morlacchi S, Pereira S, Dubini G, Migliavacca F (2012) Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur J Mech - B/Fluids 35:76–84CrossRefGoogle Scholar
  6. 6.
    Czerny M, Funovics M, Sodeck G, Dumfarth J, Schoder M, Juraszek A (2010) Long-term results of thoracic endovascular aortic repair in atherosclerotic aneurysms involving the descending aorta. J Thorac Cardiovasc Surg 140:84–S179. doi: 10.1016/j.jtcvs.2010.06.031 Google Scholar
  7. 7.
    De Santis G, Trachet B, Conti M, De Beule M, Morbiducci U, Mortier P, Segers P, Verdonck P, Verhegghe B (2013) A computational study of the hemodynamic impact of open- versus closed-cell stent design in carotid artery stenting. Artif Organs 37(7):E96–E106CrossRefGoogle Scholar
  8. 8.
    Figueroa C, Taylor C, Chiou A, Yeh V, Zarins C (2009) Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J Endovasc Ther 16(3):350–358CrossRefGoogle Scholar
  9. 9.
    Figueroa CA, Zarins CK (2011) Computational analysis of displacement forces acting on endografts used to treat aortic aneurysms. In: McGloughlin T (ed) Biomechanics and mechanobiology of aneurysms, studies in mechanobiology, tissue engineering and biomaterials, vol 7. Springer, Berlin Heidelberg, pp 221–246CrossRefGoogle Scholar
  10. 10.
    Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular Mathematics. MMS. Springer, MilanGoogle Scholar
  11. 11.
    Fung GS, Lam S, Cheng SW, Chow K (2008) On stent-graft models in thoracic aortic endovascular repair: a computational investigation of the hemodynamic factors. Comput Biol Med 38(4):484–489CrossRefGoogle Scholar
  12. 12.
    Jonker F, Schlosser F, Geirsson A, Sumpio B, Moll F, Muhs B (2010) Endograft collapse after thoracic endovascular aortic repair. J Endovasc Ther 17(6):725–734CrossRefGoogle Scholar
  13. 13.
    Kasirajan K, Dake MD, Lumsden A, Bavaria J, Makaroun MS (2012) Incidence and outcomes after infolding or collapse of thoracic stent grafts. J Vasc Surg 55(3):652–658CrossRefGoogle Scholar
  14. 14.
    Kim H, Vignon-Clementel I, Figueroa C, LaDisa J, Jansen K, Feinstein J, Taylor C (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37(11):2153–2169. doi: 10.1007/s10439-009-9760-8. URL
  15. 15.
    Lam S, Fung G, Cheng S, Chow K (2008) A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta. Med Biol Eng Comput 46:1129–1138CrossRefGoogle Scholar
  16. 16.
    Midulla M, Moreno R, Baali A, Chau M, Negre-Salvayre A, Nicoud F, Pruvo JP, Haulon S, Rousseau H (2012) Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (cfd): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations. Eur Radiol 22(10):2094–2102. doi: 10.1007/s00330-012-2465-7. URL
  17. 17.
    Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Cobelli F, Maschio A, Montevecchi F, Redaelli A (2009) In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng 37(3):516–531. doi: 10.1007/s10439-008-9609-6. URL
  18. 18.
    Nichols W, O’Rourke M, Charalambos V (2005) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Hodder Education Publishers, AbingtonGoogle Scholar
  19. 19.
    Pasta S, Cho JS, Dur O, Pekkan K, Vorp DA (2013) Computer modeling for the prediction of thoracic aortic stent graft collapse. J Vasc Surg 57(5):1353–1361. doi: 10.1016/j.jvs.2012.09.063. URL
  20. 20.
    Prasad A, To L, Gorrepati M, Zarins C, Figueroa C (2011) Computational analysis of stresses acting on intermodular junctions in thoracic aortic endografts. J Endovasc Ther 18(4):559–568CrossRefGoogle Scholar
  21. 21.
    Shukla AJ, Jeyabalan G, Cho JS (2011) Late collapse of a thoracic endoprosthesis. J Vasc Surg 53(3):798–801CrossRefGoogle Scholar
  22. 22.
    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar T (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50(6):675–686CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar T (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51(6):1061–1073CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Ueda T, Fleischmann D, Dake MD, Rubin GD, Sze DY (2010) Incomplete endograft apposition to the aortic arch: bird-beak configuration increases risk of endoleak formation after thoracic endovascular aortic repair. Radiology 255(2):645–652CrossRefGoogle Scholar
  25. 25.
    Yushkevich P, Piven J, Hazlett H, Smith R, Ho S, Gee J, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • F. Auricchio
    • 1
    • 2
  • M. Conti
    • 1
    Email author
  • A. Lefieux
    • 2
  • S. Morganti
    • 1
  • A. Reali
    • 1
  • F. Sardanelli
    • 3
    • 4
  • F. Secchi
    • 3
  • S. Trimarchi
    • 3
  • A. Veneziani
    • 5
  1. 1.University of PaviaPaviaItaly
  2. 2.Institute for Advanced Study (IUSS)PaviaItaly
  3. 3.IRCCS Policlinico San DonatoMilanItaly
  4. 4.Dipartimento di Scienze Biomediche per la SaluteUniversit degli Studi di MilanoMilanItaly
  5. 5.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA

Personalised recommendations