Computational Mechanics

, Volume 53, Issue 6, pp 1251–1264 | Cite as

A meshfree unification: reproducing kernel peridynamics

  • M. A. Bessa
  • J. T. Foster
  • T. Belytschko
  • Wing Kam Liu
Original Paper

Abstract

This paper is the first investigation establishing the link between the meshfree state-based peridynamics method and other meshfree methods, in particular with the moving least squares reproducing kernel particle method (RKPM). It is concluded that the discretization of state-based peridynamics leads directly to an approximation of the derivatives that can be obtained from RKPM. However, state-based peridynamics obtains the same result at a significantly lower computational cost which motivates its use in large-scale computations. In light of the findings of this study, an update to the method is proposed such that the limitations regarding application of boundary conditions and the use of non-uniform grids are corrected by using the reproducing kernel approximation.

Keywords

State-based peridynamics Meshfree methods Reproducing kernel Moving least squares Strong form discretization Weak form discretization 

Notes

Acknowledgments

This work was funded in part by grants from the United States Air Force Office of Scientific Research grant number W911NF-11-1-0208 and National Energy Technology Laboratory grant number DE-FE0010808.

References

  1. 1.
    Silling S, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151. doi:10.1007/s10659-007-9125-1 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Silling S, Lehoucq R (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1):13. doi:10.1007/s10659-008-9163-3 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range. J Mech Phys Solids 48(1):175. doi:10.1016/S0022-5096(99)00029-0 CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5):1186. doi:10.1016/j.ijsolstr.2008.10.029 CrossRefMATHGoogle Scholar
  5. 5.
    Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10):1242. doi:10.1002/nme.2725 MATHGoogle Scholar
  6. 6.
    Tupek M, Rimoli J, Radovitzky R (2013) An approach for incorporating classical continuum damage models in state-based peridynamics. Comput Methods Appl Mech Eng 263:20. doi:10.1016/j.cma.2013.04.012 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081. doi:10.1002/fld.1650200824 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1CrossRefGoogle Scholar
  9. 9.
    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3. doi:10.1016/S0045-7825(96)01078-X CrossRefMATHGoogle Scholar
  10. 10.
    Li S, Liu WK (2004) Meshfree particle methods. Springer, BerlinMATHGoogle Scholar
  11. 11.
    Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763. doi:10.1016/j.matcom.2008.01.003 CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307. doi:10.1007/BF00364252 CrossRefMATHGoogle Scholar
  13. 13.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229. doi:10.1002/nme.1620370205 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655. doi:10.1002/nme.1620381005 CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113. doi:10.1016/S0045-7825(96)01132-2 CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Liu WK, Chen Y, Uras R, Chang CT (1996) Generalized multiple scale reproducing kernel particle methods. Comput Methods Appl Mech Eng 139(1–4):91. doi:10.1016/S0045-7825(96)01081-X CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Liu W, Chen Y, Chang C, Belytschko T (1996) Advances in multiple scale kernel particle methods. Comput Mech 18(2):73. doi:10.1007/BF00350529 CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Notices R Astron Soc 181:375MATHGoogle Scholar
  19. 19.
    Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) Finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839CrossRefMATHGoogle Scholar
  20. 20.
    Kim DW, Liu WK (2006) Maximum principle and convergence analysis for the meshfree point collocation method. SIAM J Numer Anal 44(2):515CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Hu HY, Chen JS, Hu W (2011) Error analysis of collocation method based on reproducing kernel approximation. Numer Methods Partial Differ Equ 27(3):554. doi:10.1002/num.20539 CrossRefMATHGoogle Scholar
  22. 22.
    Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21(1):28. doi:10.1007/s004660050281 CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kim DW, Yoon YC, Liu WK, Belytschko T (2007) Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative. J Comput Phys 221(1):370. doi:10.1016/j.jcp.2006.06.023 CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Yoon YC, Song JH (2013) Extended particle difference method for weak and strong discontinuity problems: part II. Formulations and applications for various interfacial singularity problems. Comput Mech 13:1–24. doi:10.1007/s00466-013-0951-7 Google Scholar
  25. 25.
    Yoon YC, Song YH (2013) Extended particle difference method for weak and strong discontinuity problems: part I. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities. Comput Mech 3:1–17. doi:10.1007/s00466-013-0950-8 Google Scholar
  26. 26.
    Fornberg B (1988) Generation of finite difference formulas on arbitrarily spaced grids. Math Comput 51(184):699CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Lanczos C (1956) Applied analysis. Prentice-Hall, Old TappanGoogle Scholar
  28. 28.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627. doi:10.1021/ac60214a047 Google Scholar
  29. 29.
    Liu GR, Gu Y (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50(4):937Google Scholar
  30. 30.
    Liu GR (2010) Meshfree methods: moving beyond the finite element method. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54(11):1623. doi:10.1002/nme.489 CrossRefMATHGoogle Scholar
  32. 32.
    Liu G, Kee BB, Chun L (2006) A stabilized least-squares radial point collocation method (LS-RPCM) for adaptive analysis. Comput Methods Appl Mech Eng 195(37):4843CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Hu HY, Chen JS, Hu W (2007) Weighted radial basis collocation method for boundary value problems. Int J Numer Methods Eng 69(13):2736. doi:10.1002/nme.1877 CrossRefMATHGoogle Scholar
  34. 34.
    Wang L, Chen JS, Hu HY (2010) Subdomain radial basis collocation method for fracture mechanics. Int J Numer Methods Eng 83(7):851. doi:10.1002/nme.2860 MATHMathSciNetGoogle Scholar
  35. 35.
    Auricchio F, Veiga LBD, Hughes TJR, Reali A, Sangalli G (2010) Isogeometric collocation methods. Math Models Methods Appl Sci 20(11):2075. doi:10.1142/S0218202510004878 CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Auricchio F, da Veiga LB, Hughes T, Reali A, Sangalli G (2012) Isogeometric collocation for elastostatics and explicit dynamics. Comput Methods Appl Mech Eng 2:249–252. doi:10.1016/j.cma.2012.03.026 Google Scholar
  37. 37.
    Lehoucq R, Silling S (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56(4):1566. doi:10.1016/j.jmps.2007.08.004 CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Zhou K, Du Q (2010) Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J Numer Anal 48(5):1759. doi:10.1137/090781267 CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Silling S, Lehoucq R (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73. doi:10.1016/S0065-2156(10)44002-8 CrossRefGoogle Scholar
  40. 40.
    Seleson P, Parks M (2011) On the role of the influence function in the peridynamic theory. Int J Multiscale Comput Eng 9(6):689CrossRefGoogle Scholar
  41. 41.
    Diekema E, Koornwinder TH (2012) Differentiation by integration using orthogonal polynomials, a survey. J Approx Theory 164(5):637. doi:10.1016/j.jat.2012.01.003 CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Foster J, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675CrossRefGoogle Scholar
  43. 43.
    Zhu T, Atluri S (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21(3):211CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12):1257CrossRefMATHGoogle Scholar
  45. 45.
    Tian R (2013) Extra-dof-free and linearly independent enrichments in GFEM. Comput Meth Appl Mech Eng 266:1. doi:10.1016/j.cma.2013.07.005 CrossRefGoogle Scholar
  46. 46.
    Chen JS, Hu W, Hu HY (2008) Reproducing kernel enhanced local radial basis collocation method. Int J Numer Methods Eng 75(5):600. doi:10.1002/nme.2269 CrossRefMATHGoogle Scholar
  47. 47.
    Chi SW, Chen JS, Luo H, Hu HY, Wang L (2012) Dispersion and stability properties of radial basis collocation method for elastodynamics. Numer Methods Partial Diff Equ 29:818–842. doi:10.1002/num.21732 Google Scholar
  48. 48.
    Hamming RW (1989) Digital filters. Courier Dover Publications, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. A. Bessa
    • 1
  • J. T. Foster
    • 2
  • T. Belytschko
    • 1
  • Wing Kam Liu
    • 1
  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Mechanical Engineering DepartmentThe University of Texas at San AntonioSan AntonioUSA

Personalised recommendations