Computational Mechanics

, Volume 53, Issue 4, pp 845–857 | Cite as

A coupled cohesive zone model for transient analysis of thermoelastic interface debonding

Original Paper

Abstract

A coupled cohesive zone model based on an analogy between fracture and contact mechanics is proposed to investigate debonding phenomena at imperfect interfaces due to thermomechanical loading and thermal fields in bodies with cohesive cracks. Traction-displacement and heat flux–temperature relations are theoretically derived and numerically implemented in the finite element method. In the proposed formulation, the interface conductivity is a function of the normal gap, generalizing the Kapitza constant resistance model to partial decohesion effects. The case of a centered interface in a bimaterial component subjected to thermal loads is used as a test problem. The analysis focuses on the time evolution of the displacement and temperature fields during the transient regime before debonding, an issue not yet investigated in the literature. The solution of the nonlinear numerical problem is gained via an implicit scheme both in space and in time. The proposed model is finally applied to a case study in photovoltaics where the evolution of the thermoelastic fields inside a defective solar cell is predicted.

Keywords

Thermoelasticity Interface debonding Cohesive zone model Photovoltaics 

References

  1. 1.
    Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) A numerical model for thermomechanical contact based on microscopic interface laws. Int J Numer Methods Eng 35:767–785CrossRefMATHGoogle Scholar
  2. 2.
    Song S, Yovanovich MM (1987) Explicit relative contact pressure expression: dependence upon surface roughness parameters and Vickers microhardness coefficients. AIAA Paper 87-0152Google Scholar
  3. 3.
    Wriggers P, Zavarise G (1993) Thermomechanical contact—a rigorous but simple numerical approach. Comput Struct 46:47–52CrossRefGoogle Scholar
  4. 4.
    Hattiangadi A, Siegmund T (2004) A thermomechanical cohesive zone model for bridged delamination cracks. J Mech Phys Solids 52:533–566CrossRefMATHGoogle Scholar
  5. 5.
    Hattiangadi A, Siegmund T (2005) A numerical study on interface crack growth under heat flux loading. Int J Solids Struct 42:6335–6355CrossRefMATHGoogle Scholar
  6. 6.
    Ozdemir I, Brekelmans WAM, Geers MGD (2010) A thermo-mechanical cohesive zone model. Comput Mech 26:735–745CrossRefGoogle Scholar
  7. 7.
    Moonen P (2009) Continuous–discontinuous modelling of hygrothermal damage processes in porous media. PhD Dissertation, Catholic University of Leuven, Belgium. ISBN 978-94-6018-083-5Google Scholar
  8. 8.
    Segura JM, Carol I (2008) Coupled HM analysis using zero-thickness interface elements with double nodes. Part I: theoretical model. Int J Numer Anal Methods Geomech 32:2083–2101CrossRefMATHGoogle Scholar
  9. 9.
    Secchi S, Simoni L, Schrefler BA (2007) Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials. Int J Numer Anal Methods Geomech 31:331–345CrossRefMATHGoogle Scholar
  10. 10.
    Rethore J, de Borst R, Abellan MA (2008) A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Comput Mech 42:227–238CrossRefMATHGoogle Scholar
  11. 11.
    Shahil KMF, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867CrossRefGoogle Scholar
  12. 12.
    Le-Quang H, Phan TL, Bonnet G (2011) Effective thermal conductivity of periodic composites with highly conducting imperfect interfaces. Int J Therm Sci 50:1428–1444CrossRefGoogle Scholar
  13. 13.
    Yvonnet J, He QC, Zhu Q-Z, Shao J-F (2011) A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput Mater Sci 50:1220–1224CrossRefGoogle Scholar
  14. 14.
    Barber JR (2003) Bounds on the electrical resistance between contacting elastic rough bodies. Proc R Soc Lond A 459:53–66CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Paggi M, Barber JR (2011) Contact conductance of rough surfaces composed of modified RMD patches. Int J Heat Mass Transf 4:4664–4672CrossRefGoogle Scholar
  16. 16.
    Schellekens JCJ, de Borst R (1993) On the numerical integration of interface elements. Int J Numer Methods Eng 36:43–66Google Scholar
  17. 17.
    Paggi M, Wriggers P (2012) A nonlocal cohesive zone model for finite thickness interfaces—Part II: FE implementation and application to polycrystalline materials. Comput Mater Sci 50:1634–1643CrossRefMathSciNetGoogle Scholar
  18. 18.
    Zienkiewicz OC, Taylor RL (2005) The finite element method, 6th edn. Elsevier, OxfordMATHGoogle Scholar
  19. 19.
    Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solids 37:567–582CrossRefMATHGoogle Scholar
  20. 20.
    Paggi M, Wriggers P (2011) A nonlocal cohesive zone model for finite thickness interfaces—Part I: mathematical formulation and validation with molecular dynamics. Comput Mater Sci 50:1625–1633CrossRefGoogle Scholar
  21. 21.
    Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295:300–319CrossRefGoogle Scholar
  22. 22.
    Lorenz B, Persson BNJ (2008) Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. J Phys Condens Matter 21:015003CrossRefGoogle Scholar
  23. 23.
    Kubair DV, Geubelle PH (2003) Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture. Int J Solids Struct 40:3853–3868CrossRefMATHGoogle Scholar
  24. 24.
    Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int J Fract 77:111–140CrossRefGoogle Scholar
  25. 25.
    Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRefMATHGoogle Scholar
  26. 26.
    van den Bosch MJ, Schreurs PJG, Geers MGD (2006) An improved definition of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73:1220–1234 Google Scholar
  27. 27.
    Paggi M, Wriggers P (2012) Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces. J Mech Phys Solids 60:557–571CrossRefGoogle Scholar
  28. 28.
    Paggi M, Corrado M, Rodriguez MA (2013) A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos Struct 95:630–638CrossRefGoogle Scholar
  29. 29.
    Weinreich B, Schauer B, Zehner M, Becker G (2012) Validierung der Vermessung gebrochener Zellen im Feld mittels Leistungs PV-Thermographie. In: Tagungsband 27. Symposium Photovoltaische Solarenergie, Bad Staffelstein, Germany, pp 190–196Google Scholar
  30. 30.
    Paggi M, Sapora A (2013) Numerical modelling of microcracking in PV modules induced by thermo-mechanical loads. Energy Procedia 38:506–515CrossRefGoogle Scholar
  31. 31.
    Munoz MA, Alonso-Garcia MC, Vela N, Chenlo F (2011) Early degradation of silicon PV modules and guaranty conditions. Sol Energy 85:2264–2274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Structural, Geotechnical and Building EngineeringPolitecnico di TorinoTurinItaly

Personalised recommendations