Computational Mechanics

, Volume 54, Issue 4, pp 911–919 | Cite as

Computation of residence time in the simulation of pulsatile ventricular assist devices

  • C. C. Long
  • M. Esmaily-Moghadam
  • A. L. Marsden
  • Y. BazilevsEmail author
Original Paper


A continuum-based model of particle residence time for moving-domain fluid mechanics and fluid–structure interaction (FSI) computations is proposed, analyzed, and applied to the simulation of an adult pulsatile ventricular assist device (PVAD). Residence time is a quantity of clinical interest for blood pumps because it correlates with thrombotic risk. The proposed technique may be easily implemented in any flow or FSI solver. In the context of PVADs the results of the model may be used to assess how efficiently the pump moves the blood through its interior. Three scalar measures of particle residence time are also proposed. These scalar quantities may be used in the PVAD design with the goal of reducing thrombotic risk.


PVAD Residence time FSI Isogeometric analysis Biomechanics FEM Blood flow 



The authors would like to acknowledge funding from a Burroughs Wellcome Fund Career Award at the Scientific Interface (AM), NSF CAREER awards OCI-1150184 (AM) and OCI-1055091 (YB). We also thank Oak Ridge National Laboratory (ORNL) and the University of Tennessee for providing the HPC resources that have contributed to the research results reported in this paper.


  1. 1.
    Affeld K, Reininger J, Gadischke J, Grunert K, Schmidt S, Thiele F (1995) Fluid mechanics of the stagnation point flow chamber and its platelet deposition. Artif Organs 19(7):597–602CrossRefGoogle Scholar
  2. 2.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ\(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253CrossRefzbMATHGoogle Scholar
  6. 6.
    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci 22(supp02):1230002Google Scholar
  8. 8.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, LondonGoogle Scholar
  9. 9.
    Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Methods Eng 83:765–785zbMATHGoogle Scholar
  10. 10.
    Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Bluestein D, Niu L, Schoephoerster R, Dewanjee M (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25:344–356CrossRefGoogle Scholar
  12. 12.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Clark JB, Pauliks LB, Myers JL, Undar A (2011) Mechanical circulatory support for end-stage heart failure in repaired and palliated congenital heart disease. Curr Cardiol Rev 7(2):102–109CrossRefGoogle Scholar
  15. 15.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward Integration of CAD and FEA. Wiley, LondonGoogle Scholar
  16. 16.
    David T, Thomas S, Walker PG (2001) Platelet seposition in stagnation point flow: an analytical and computational simulation. Med Eng Phys 23(5):299–312CrossRefGoogle Scholar
  17. 17.
    Duvernois V, Marsden AL, Shadden SC (2013) Lagrangian analysis of hemodynamics data from FSI simulation. Int J Numer Methods Biomed Eng 29:445–461CrossRefMathSciNetGoogle Scholar
  18. 18.
    Esmaily-Moghadam M, Bazilevs Y, Marsden A (2013) Low entropy data mapping for sparse iterative linear solvers. In: Proceedings of the conference on extreme science and engineering discovery environment: gateway to discovery, p 2Google Scholar
  19. 19.
    Esmaily-Moghadam M, Hsia T-Y, Marsden AL (2013) A non-discrete method for computation of residence time in fluid mechanics simulations. Phys Fluids. Published online. doi: 10.1063/1.4819142
  20. 20.
    Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157:95–114CrossRefzbMATHGoogle Scholar
  21. 21.
    Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D (1993) Survival after the onset of congestive heart failure in framingham heart study subjects. Circulation 88:107115CrossRefGoogle Scholar
  22. 22.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-\(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319CrossRefMathSciNetGoogle Scholar
  25. 25.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73– 94Google Scholar
  26. 26.
    Jozsa J, Kramer T (2000) Modeling residence time as advection-diffusion with zero-order reaction kinetics. In: Proceedings of the hydrodynamics 2000 conference. International Association of Hydraulic Engineering and ResearchGoogle Scholar
  27. 27.
    Jozsa J, Kramer T, Peltoniemi H (2001) Assessing water exchange mechanisms in complex lake and coastal flows by modeling the spatial distribution of mean residence time. In: CD-ROM proceedings of the XXIX IAHR Congress, Beijing, pp 73–79Google Scholar
  28. 28.
    Kiendl J, Bazilevs Y, Hsu M-C, R. Wüchner, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416Google Scholar
  29. 29.
    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914CrossRefzbMATHGoogle Scholar
  30. 30.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:948954Google Scholar
  31. 31.
    Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech. Published online. doi: 10.1007/s00466-013-0858-3
  32. 32.
    Longest PW, Kleinstreuer C (2003) Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut. Med Eng Phys 25:843–858CrossRefGoogle Scholar
  33. 33.
    Marsden AL, Bazilevs Y, Long CC, Behr M (2013) Recent advances in computational methodology for simulation of mechanical circulatory assist devices. Syst Biol Med. Review article (in review)Google Scholar
  34. 34.
    Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197:1890–1905CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Marsden AL, Wang M, Dennis JE Jr, Moin P (2007) Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J Fluid Mech 572:13–36CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Miller LW (2011) Left ventricular assist devices are underutilized. Circulation 123:15528Google Scholar
  37. 37.
    Moghadam ME, Bazilevs Y, Hsia Y-Y, Vignon-Clementel IE, Marsden AL, Modeling of Congenital Hearts Alliance (MOCHA) (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291Google Scholar
  38. 38.
    Narracott A, Smith S, Lawford P, Liu H, Himeno R, Wilkinson I, Griffiths P, Hose R (2005) Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms. Int J Artif Organs 8:56–62CrossRefGoogle Scholar
  39. 39.
    Nordbeck S, Rystedt B (1967) Computer cartography point-in-polygon programs. BIT Numer Math 7:39–64CrossRefzbMATHGoogle Scholar
  40. 40.
    Ortega JM, Hartman J, Rodriguez JN, Maitland DJ (2013) Virtual treatment of basilar aneurysms using shape memory polymer foam. Ann Biomed Eng 41:725–743CrossRefGoogle Scholar
  41. 41.
    Rayz V, Boussel L, Ge L, Leach J, Martin A, Lawton M, McCulloch C, Saloner D (2010) Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng 38:3058–3069CrossRefGoogle Scholar
  42. 42.
    Reininger A, Reininger C, Heinzmann U, Wurzinger L (1995) Residence time in niches of stagnant flow determines fibrin clot formation in arterial branching model-detailed flow analysis and experimental results. Thromb Haemost 74:916–922Google Scholar
  43. 43.
    Sankaran S, Audet C, Marsden AL (2010) A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation. J Comput Phys 229(12):4664–4682CrossRefzbMATHGoogle Scholar
  44. 44.
    Sankaran S, Marsden AL (2011) A stochastic collocation method for uncertainty quantification in cardiovascular simulations. J Biomech Eng 133:031001CrossRefGoogle Scholar
  45. 45.
    Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999) Computational simulation of platelet deposition and activation: I. Model development and properties. Ann Biomed Eng 27:436–448CrossRefGoogle Scholar
  46. 46.
    Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999) Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann Biomed Eng 27:449–458CrossRefGoogle Scholar
  47. 47.
    Strong AB, Stubley GD, Chang G, Absolom DR (1987) Theoretical and experimental analysis of cellular adhesion to polymer surfaces. J Biomed Mater Res 21:1039–1055CrossRefGoogle Scholar
  48. 48.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225CrossRefMathSciNetGoogle Scholar
  49. 49.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116CrossRefzbMATHGoogle Scholar
  50. 50.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323CrossRefzbMATHGoogle Scholar
  51. 51.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001CrossRefMathSciNetGoogle Scholar
  53. 53.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36CrossRefGoogle Scholar
  54. 54.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143, ASME, New York, pp 7–24Google Scholar
  55. 55.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III International Congress on Numerical Methods in Engineering and Applied Science. CD-ROM, Monterrey, MexicoGoogle Scholar
  57. 57.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027 Google Scholar
  58. 58.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49CrossRefzbMATHGoogle Scholar
  59. 59.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218CrossRefzbMATHGoogle Scholar
  65. 65.
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796CrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    Yang W, Feinstein JA, Marsden AL (2010) Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. Comput Methods Appl Mech Eng 199:2135–2149CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. C. Long
    • 2
  • M. Esmaily-Moghadam
    • 2
  • A. L. Marsden
    • 2
  • Y. Bazilevs
    • 1
    Email author
  1. 1.Department of Structural EngineeringUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations