Advertisement

Computational Mechanics

, Volume 52, Issue 6, pp 1301–1312 | Cite as

Finite element computation and experimental validation of sloshing in rectangular tanks

  • Marcela A. Cruchaga
  • Ricardo S. Reinoso
  • Mario A. Storti
  • Diego J. Celentano
  • Tayfun E. Tezduyar
Original Paper

Abstract

Finite element computation and experimental validation of sloshing in rectangular tanks near the primary and secondary resonance modes are presented. In particular, 2D free-surface evolution is studied. The computational analysis is based on solving the Navier-Stokes equations of incompressible flows with a monolithic solver that includes a stabilized formulation and a Lagrangian tracking technique for updating the free surface. The time-dependent behavior of the numerical and experimental wave heights at different control points are compared, where the experimental data is collected using ultrasonic sensors and a shake table that controls the motion of the rectangular container.

Keywords

Sloshing Numerical simulation Experimental validation 

Notes

Acknowledgments

The support provided by the Chilean Council for Research and Technology CONICYT (FONDECYT Project No. 1095028), DICYT-VRID-USACH, Asociación de Universidades del Grupo Montevideo (AUGM, Programa de movilidad docente), and Agencia Nacional de Promoción Científica y Técnica (ANPCyT, Grants PICT-1141/2007 and PICT-2492/2010), are gratefully acknowledged.

References

  1. 1.
    Faltinsen O, Rognebakke O, Lukovsky I, Timokha A (2000) Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J Fluid Mech 407:201–234MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Faltinsen O, Rognebakke O, Timokha A (2005) Resonant three-dimensional nonlinear sloshing in a square-base basin. part 2. effect of higher modes. J Fluid Mech 523(1):199–218MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Faltinsen O, Timokha A (2010) A multimodal method for liquid sloshing in a two-dimensional circular tank. J Fluid Mech 665:457–479MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hughes T, Liu W, Zimmermann T (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Huerta A, Liu W (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69(3):277–324CrossRefzbMATHGoogle Scholar
  6. 6.
    Tezduyar T, Behr M, Liou J (1992) A New strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36CrossRefGoogle Scholar
  9. 9.
    Tezduyar T, Aliabadi S, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177CrossRefzbMATHGoogle Scholar
  10. 10.
    Battaglia L, D’Elía J, Storti M (2011) Simulación numérica de la agitación en tanques de almacenamiento de líquidos mediante una estrategia lagrangiana euleriana arbitraria. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 28(2):124–134CrossRefGoogle Scholar
  11. 11.
    Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155:235–248CrossRefzbMATHGoogle Scholar
  12. 12.
    Aliabadi S, Tezduyar T (2000) Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 190:243–261CrossRefzbMATHGoogle Scholar
  13. 13.
    Tezduyar T, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190: 403–410CrossRefzbMATHGoogle Scholar
  14. 14.
    Akyildız H, Erdem Ünal N (2006) Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Eng 33(16):2135–2149CrossRefGoogle Scholar
  15. 15.
    Liu D, Lin P (2008) A numerical study of three-dimensional liquid sloshing in tanks. J Comput Phys 227(8):3921–3939CrossRefzbMATHGoogle Scholar
  16. 16.
    Löhner R, Yang C, Oñate E (2006) Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int J Numer Methods Fluids 53(8):1315–1338Google Scholar
  17. 17.
    Virella J, Prato C, Godoy L (2008) Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions. J Sound Vib 312(3):442–460CrossRefGoogle Scholar
  18. 18.
    Tezduyar T (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefzbMATHGoogle Scholar
  19. 19.
    Tezduyar T (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195:2983– 3000MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cruchaga M, Celentano D, Tezduyar T (2005) Moving-interface computations with the edge-tracked interface locator technique (ETILT). Int J Numer Methods Fluids 47:451–469CrossRefzbMATHGoogle Scholar
  21. 21.
    Akin J, Tezduyar T, Ungor M (2007) Computation of flow problems with the mixed interface-tracking interface-capturing technique (MITICT). Comput Fluids 36:2–11CrossRefzbMATHGoogle Scholar
  22. 22.
    Cruchaga M, Celentano D, Tezduyar T (2007) A numerical model based on the mixed interface-tracking/interface capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Methods Fluids 54(6):1021–1030CrossRefzbMATHGoogle Scholar
  23. 23.
    Cruchaga M, Celentano D, Tezduyar T (2007) Collapse of a liquid column: numerical simulation and experimental validation. Comput Mech 39(4):453–476CrossRefzbMATHGoogle Scholar
  24. 24.
    Cruchaga M, Muñoz C, Celentano D (2008) Simulation and experimental validation of the motion of immersed rigid bodies in viscous flows. Comput Methods Appl Mech Eng 197(33–40):2823–2835CrossRefzbMATHGoogle Scholar
  25. 25.
    Cruchaga M, Löhner R, Celentano D (2012) Spheres falling into viscous flows: experimental and numerical analysis. Int J Numer Methods Fluid 69(9):1496–1521CrossRefGoogle Scholar
  26. 26.
    Battaglia L, Storti M, D’Elía J (2010) Simulation of free-surface flows by a finite element interface capturing technique. Int J Comput Fluid Dyn 24(3–4):121–133MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Battaglia L, Storti M, D’Elía J (2010) Bounded renormalization with continuous penalization for level set interface-capturing methods. Int J Numer Methods Eng 84(7):830–848CrossRefzbMATHGoogle Scholar
  28. 28.
    Ausas R, Dari E, Buscaglia G (2011) A geometric mass-preserving redistancing scheme for the level set function. Int J Numer Methods Fluids 65(8):989–1010CrossRefzbMATHGoogle Scholar
  29. 29.
    Ausas R, Buscaglia G, Idelsohn S (2012) A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int J Numer Methods Fluids 70(7):829–850MathSciNetCrossRefGoogle Scholar
  30. 30.
    Coppola-Owen A, Codina R (2005) Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Methods Fluids 49(12):1287–1304MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Cruchaga M, Celentano D, Tezduyar T (2001) A moving Lagrangian interface technique for flow computations over fixed meshes. Comput Methods Appl Mech Eng 191(6):525–543CrossRefzbMATHGoogle Scholar
  32. 32.
    Cruchaga M, Celentano D, Breitkopf P, Villon P, Rassineux A (2006) A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows. Int J Numer Methods Eng 66(13):2035–2063CrossRefzbMATHGoogle Scholar
  33. 33.
    Cruchaga M, Celentano D, Breitkopf P, Villon P, Rassineux A (2010) A surface remeshing technique for a Lagrangian description of 3d two-fluid flow problems. Int J Numer Methods Fluids 63(4):415–430zbMATHGoogle Scholar
  34. 34.
    Idelsohn R, Storti M, Oñate E (2001) Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Comput Methods Appl Mech Eng 191(6):583–593CrossRefzbMATHGoogle Scholar
  35. 35.
    Idelsohn S, Oñate E, Del Pin F, Calvo N (2006) Fluid-structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195(17):2100–2123CrossRefzbMATHGoogle Scholar
  36. 36.
    Takizawa K, Yabe T, Tsugawa Y, Tezduyar T, Mizoe H (2007) Computation of free-surface flows and fluid-object interactions with the cip method based on adaptive meshless soroban grids. Comput Mech 40:167–183CrossRefzbMATHGoogle Scholar
  37. 37.
    Yabe T, Takizawa K, Tezduyar T, Im H (2007) Computation of fluid–solid and fluid–fluid interfaces with the cip method based on adaptive soroban grids—an overview. Int J Numer Methods Fluids 54:841–853MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Takizawa K, Tanizawa K, Yabe T, Tezduyar T (2007) Ship hydrodynamics computations with the CIP method based on adaptive soroban grids. Int J Numer Methods Fluids 54:1011–1019CrossRefzbMATHGoogle Scholar
  39. 39.
    Quanser (2013) STII Manual. On line access:www.quanser.com.Google Scholar
  40. 40.
    Cruchaga M, Oñate E (1997) A finite element formulation for incompressible flow problems using a generalized streamline operator. Comput Methods Appl Mech Eng 143(1):49–67CrossRefzbMATHGoogle Scholar
  41. 41.
    Tezduyar T, Park Y (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325CrossRefzbMATHGoogle Scholar
  42. 42.
    Tezduyar T (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Cruchaga M, Celentano D, Tezduyar T (2009) Computational modeling of the collapse of a liquid column over an obstacle and experimental validation. J Appl Mech 76:021202CrossRefGoogle Scholar
  44. 44.
    Rispoli F, Corsini A, Tezduyar T (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126 Google Scholar
  45. 45.
    Corsini A, Rispoli F, Santoriello A, Tezduyar T (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364 Google Scholar
  46. 46.
    Corsini A, Rispoli F, Sheard A, Tezduyar T (2012) Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations. Comput Mech 50:695–705MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcela A. Cruchaga
    • 1
  • Ricardo S. Reinoso
    • 1
  • Mario A. Storti
    • 2
  • Diego J. Celentano
    • 3
  • Tayfun E. Tezduyar
    • 4
  1. 1.Departamento de Ingeniería MecánicaUniversidad de Santiago de Chile USACHSantiagoChile
  2. 2.CIMEC, INTEC—Universidad Nacional del Litoral y CONICETSanta FeArgentina
  3. 3.Departamento de Ingeniería Mecánica y MetalúrgicaPontificia Universidad Católica de Chile PUCSantiagoChile
  4. 4.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations