Computational Mechanics

, Volume 52, Issue 6, pp 1281–1299 | Cite as

Lie-group interpolation and variational recovery for internal variables

  • Alejandro Mota
  • WaiChing Sun
  • Jakob T. Ostien
  • James W. FoulkIII
  • Kevin N. Long
Original Paper

Abstract

We propose a variational procedure for the recovery of internal variables, in effect extending them from integration points to the entire domain. The objective is to perform the recovery with minimum error and at the same time guarantee that the internal variables remain in their admissible spaces. The minimization of the error is achieved by a three-field finite element formulation. The fields in the formulation are the deformation mapping, the target or mapped internal variables and a Lagrange multiplier that enforces the equality between the source and target internal variables. This formulation leads to an \(L_2\) projection that minimizes the distance between the source and target internal variables as measured in the \(L_2\) norm of the internal variable space. To ensure that the target internal variables remain in their original space, their interpolation is performed by recourse to Lie groups, which allows for direct polynomial interpolation of the corresponding Lie algebras by means of the logarithmic map. Once the Lie algebras are interpolated, the mapped variables are recovered by the exponential map, thus guaranteeing that they remain in the appropriate space.

Keywords

Variational methods Internal variables Recovery  Interpolation Lie groups 

References

  1. 1.
    Antman S (2005) Nonlinear Problems in Elasticity, 2nd edn. Springer, New YorkGoogle Scholar
  2. 2.
    Barlow J (1976) Optimal stress locations in finite element models. Int J Numer Methods Eng 10:243–251CrossRefMATHGoogle Scholar
  3. 3.
    Bleier N, Mosler J (2012) Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int J Numer Methods Eng 89(9):1120–1143. doi:10.1002/nme.3280. ISSN 0029–5981Google Scholar
  4. 4.
    Brenner SC, Scott LR (2002) The mathematical theory of finite element methods. Springer, New York. ISBN 9780387954516Google Scholar
  5. 5.
    Bucher A, Meyer A, Goerke UJ, Kreissig R (2007) A comparison of mapping algorithms for hierarchical adaptive FEM in finite elasto-plasticity. Comput Mech 39(4): 521–536. doi:10.1007/s00466-006-0051-z. ISSN 0178–7675Google Scholar
  6. 6.
    Cheng SH, Higham NJ, Kenney CS, Laub AJ (2001) Approximating the logarithm of a matrix to specified accuracy. SIAM J Matrix Anal Appl 22(4):1112–1125. ISSN 0895–4798Google Scholar
  7. 7.
    Davies PI, Higham NJ (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J Matrix Anal Appl 25(2):464–485. doi:10.1137/S0895479802410815. ISSN 0895–4798
  8. 8.
    Fancello E, Ponthot JP, Stainier L (2006) A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int J Numer Methods Eng 65(11):1831–1864. doi:10.1002/nme.1525. ISSN 0029–5981Google Scholar
  9. 9.
    Gallier J (2011) Geometric methods and applications: for Computer science and engineering. Springer, New York. ISBN 9781441999603Google Scholar
  10. 10.
    Higham NJ (2001) Evaluating Padé approximants of the matrix logarithm. SIAM J Matrix Anal Appl 22(4):1126–1135. ISSN 0895–4798Google Scholar
  11. 11.
    Higham NJ (2005) The scaling and squaring method for the matrix exponential revisited. SIAM J Matrix Anal Appl 26(4):1179–1193. doi:10.1137/04061101X. ISSN 0895–4798Google Scholar
  12. 12.
    Higham NJ (2008) Functions of matrices, theory and computation. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATHGoogle Scholar
  13. 13.
    Hinton E, Campbell JS (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Methods Eng 8:461–480MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jiao XM, Heath MT (2004) Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. Int J Numer Methods Eng 61(14):2402–2427. doi:10.1002/nme.1147. ISSN 0029–5981Google Scholar
  15. 15.
    Jog CS (2008) The explicit determination of the logarithm of a tensor and its derivatives. J Elast 93(2):141–148. doi:10.1007/s10659-008-9169-x. ISSN 0374–3535Google Scholar
  16. 16.
    Kosmann-Schwarzbach Y (2009) Groups and symmetries: from finite groups to lie groups. Springer, New York. ISBN 9780387788654Google Scholar
  17. 17.
    Krieg RD, Krieg DB (1977) Accuracies of numerical solution methods for the elastic-perfectly plastic model. ASME J Pres Vessel Technol 99:510–515CrossRefGoogle Scholar
  18. 18.
    Lambrecht M, Miehe C, Dettmar J (2003) Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int J Solids Struct 40(6):1369–1391. doi:10.1016/S0020-7683(02)00658-3. ISSN 0020–7683Google Scholar
  19. 19.
    Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Springer, New York. ISBN 9780387986432Google Scholar
  20. 20.
    Miehe C, Lambrecht M, Gürses E (2004) Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J Mech Phys Solids 52(12): 2725–2769. doi:10.1016/j.jmps.2004.05.011. ISSN 0022–5096Google Scholar
  21. 21.
    Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50(10): 2123–2167. doi:10.1016/S0022-5096(02)00016-9. ISSN 0022–5096
  22. 22.
    Mosler J, Bruhns OT (2010) On the implementation of rate-independent standard dissipative solids at finite strain—Variational constitutive updates. Comput Methods Appl Mech Eng 199(9–12):417–429. doi:10.1016/j.cma.2009.07.006. ISSN 0045–7825
  23. 23.
    Mota A, Abel JF (2005) Stress recovery in geometrically nonlinear membranes by a Hu-Washizu finite element formulation. Comput Mech 36(3): 171–181. doi:10.1007/s00466-004-0650-5. ISSN 0178–7675 Google Scholar
  24. 24.
    Muschik W, Papenfuss C, Ehrentraut H (2001) A sketch of continuum thermodynamics. J Non-Newton Fluid Mech 96(1–2, Sp. Iss. SI): 255–290. ISSN 0377–0257 (2nd International Workshop on Nonequilibrium Thermodynamics, Oxford, England, Aug, 2000)Google Scholar
  25. 25.
    Oden JT, Brauchli HJ (1971) On the calculation of consistent stress distributions in finite element approximations. Int J Numer Methods Eng 3:317–325Google Scholar
  26. 26.
    Orlando A, Peric D (2004) Analysis of transfer procedures in elastoplasticity based on the error in the constitutive equations: Theory and numerical illustration. Int J Numer Methods Eng 60(9): 1595–1631. ISSN 0029–5981Google Scholar
  27. 27.
    Ortiz M, Quigley JJ (1991) Adaptive mesh refinement in strain localization problems. Comput Methods Appl Mech Eng 90 (1–3):781–804. ISSN 0045–7825Google Scholar
  28. 28.
    Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Eng 171 (3–4):419–444Google Scholar
  29. 29.
    Ortiz M, Radovitzky RA, Repetto EA (2001) The computation of the exponential and logarithmic mappings and their first and second linearizations. Int J Numer Methods Eng 52(12):1431–1441MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Park FC, Ravani B (1997) Smooth invariant interpolation of rotations. ACM Trans Graph 16 (3):277–295. doi:10.1145/256157.256160. ISSN 0730–0301Google Scholar
  31. 31.
    Peric D., Hochard C, Dutko M, Owen DRJ (1996) Transfer operators for evolving meshes in small strain elasto-placticity. Comput Methods Appl Mech Eng 137(3–4):331–344. ISSN 0045–7825Google Scholar
  32. 32.
    Procesi C (2006) Lie groups: an approach through invariants and representations (Universitext), 1st edn. Springer, New York. ISBN 0387260404Google Scholar
  33. 33.
    Radovitzky R, Ortiz M (1999) Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput Methods Appl Mech Eng 172(1–4):203–240. ISSN 0045–7825Google Scholar
  34. 34.
    Rashid MM (2002) Material state remapping in computational solid mechanics. Int J Numer Methods Eng 55(4):431–450. doi:10.1002/nme.508. ISSN 0029–5981Google Scholar
  35. 35.
    Sandia National Laboratories (2013a) CUBIT: Geometry and mesh generation toolkit. URL http://cubit.sandia.gov/
  36. 36.
    Sandia National Laboratories (2013b) LCM: Laboratory for computational mechanics. URL https://software.sandia.gov/albany/
  37. 37.
    Sepanski MR (2007) Compact lie groups. Springer, New York. ISBN 9780387302638Google Scholar
  38. 38.
    Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATHGoogle Scholar
  39. 39.
    Taylor LM, Becker EB (1983) Some computational aspects of large deformation, rate-dependent plasticity problems. Comput Methods Appl Mech Eng 41:251–278CrossRefMATHGoogle Scholar
  40. 40.
    The Mathworks, Inc. Matlab (2011) URL http://www.mathworks.com/. Natick, Massachusetts
  41. 41.
    Weinberg K, Mota A, Ortiz M (2006) A variational constitutive model for porous metal plasticity. Comput Mech 37:142–152CrossRefMATHGoogle Scholar
  42. 42.
    Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinGoogle Scholar
  43. 43.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a-posteriori error estimates. 1. The recovery technique. Int J Numer Methods Eng 33:1331–1364MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • Alejandro Mota
    • 1
  • WaiChing Sun
    • 1
  • Jakob T. Ostien
    • 1
  • James W. FoulkIII
    • 1
  • Kevin N. Long
    • 2
  1. 1.Mechanics of Materials DepartmentSandia National LaboratoriesLivermoreUSA
  2. 2.Solid Mechanics DepartmentSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations