Computational Mechanics

, Volume 52, Issue 4, pp 799–814 | Cite as

Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM

  • S. Bhattacharya
  • I. V. Singh
  • B. K. Mishra
  • T. Q. Bui
Original Paper


An investigation of fatigue crack growth of interfacial cracks in bi-layered materials using the extended finite element method is presented. The bi-material consists of two layers of dissimilar materials. The bottom layer is made of aluminium alloy while the upper one is made of functionally graded material (FGM). The FGM layer consists of 100 % aluminium alloy on the left side and 100 % ceramic (alumina) on the right side. The gradation in material property of the FGM layer is assumed to be exponential from the alloy side to the ceramic side. The domain based interaction integral approach is extended to obtain the stress intensity factors for an interfacial crack under thermo-mechanical load. The edge and centre cracks are taken at the interface of bi-layered material. The fatigue life of the interface crack plate is obtained using the Paris law of fatigue crack growth under cyclic mode-I, mixed-mode and thermal loads. This study reveals that the crack propagates into the FGM layer under all types of loads.


Bi-layered FGM Interface crack  Extended finite element method  Fatigue crack propagation 


  1. 1.
    Amit KC, Kim JH (2008) Interaction integrals for thermal fracture of functionally graded materials. Eng Frac Mech 75:2542–2565CrossRefGoogle Scholar
  2. 2.
    Anderson TL (1995) Fracture mechanics: fundamentals and applications. CRC Press, Florida. ISBN 0-8493-4260-0Google Scholar
  3. 3.
    Arola D, Huang MP, Sultan MB (1999) The failure of amalgam dental restorations due to cyclic fatigue crack growth. J Mater Sci Mater Med 10:319–327CrossRefGoogle Scholar
  4. 4.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620Google Scholar
  5. 5.
    Guo L, Guo F, Yu H, Zhang L (2012) An interaction energy integral method for nonhomogeneous materials with interfaces under thermal loading. Int J Solids Struct 49:355–365CrossRefGoogle Scholar
  6. 6.
    Hsieh CL, Tuang WH (2005) Poisson’s ratio of two phase composites. Mat Sci Eng A 396:202–205CrossRefGoogle Scholar
  7. 7.
    Kim JH, Paulino GH (2005) Consistent formulations of the interaction integral method for fracture of functionally graded materials. J Appl Mech 72:351–364CrossRefMATHGoogle Scholar
  8. 8.
    Liu XY, Xiao QZ, Karihaloo BL (2004) XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials. Int J Numer Methods Eng 59:1103–1118Google Scholar
  9. 9.
    Menshykov OV, Menshykova MV, Guz IA (2012) 3-D elastodynamic contact problem for an interface crack under harmonic loading. Eng Frac Mech 80:52–59Google Scholar
  10. 10.
    Miyakazi N, Ikeda T, Soda T, Munakata T (1993) Stress intensity factor analysis of interface crack using boundary element method—application of contour-integral method. Eng Frac Mech 45: 599–610Google Scholar
  11. 11.
    Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150 Google Scholar
  12. 12.
    Nagai M, Ikeda T, Miyazaki N (2007) Stress intensity factor analysis of a three-dimensional interface crack between dissimilar anisotropic materials. Eng Frac Mech 74:2481–2497CrossRefGoogle Scholar
  13. 13.
    Pant M, Singh IV, Mishra BK (2011) Evaluation of mixed mode stress intensity factors for interface cracks using EFGM. Appl Math Model 35:3443–3459MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Pathak H, Singh A, Singh IV (2012) Numerical simulation of bi-material interfacial cracks using EFGM and XFEM. Int J Mech Mater Design 8:9–36CrossRefGoogle Scholar
  15. 15.
    Qin TY, Zhu BJ, Noda NA (2008) Mixed-mode stress intensity factors of a three-dimensional crack in a bonded biomaterial. Eng Comput 25:251–267CrossRefMATHGoogle Scholar
  16. 16.
    Rao BN, Rahman S (2003) Meshfree analysis of cracks in isotropic functionally graded materials. Eng Frac Mech 70:1–27CrossRefGoogle Scholar
  17. 17.
    Raveendran KV, Verma AP, Rao CVSK (1991) Effective fracture toughness of composites. Int J Frac 47:R63–R65CrossRefGoogle Scholar
  18. 18.
    Rethore J, Gravouil A, Combescure A (2005a) An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Numer Methods Eng 63:631–659MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rethore J, Gravouil A, Combescure A (2005b) A combined space-time extended finite element method. Int J Numer Methods Eng 64:260–284MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Roylance D (2001) Fatigue. Department of Materials Science and Engineering, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  21. 21.
    Sukumar N, Prevost J (2003) Modeling quasi-static crack growth with the extended finite element method part I: computer implementation. Int J Solids Struct 40:7513–7537CrossRefMATHGoogle Scholar
  22. 22.
    Sukumar N, Huang ZY, Prevost J, Suo Z (2004) Partition of unity enrichment for bi-material interface cracks. Int J Numer Methods Eng 59:1075–1102CrossRefMATHGoogle Scholar
  23. 23.
    Walters MC, Paulino GH (2006) Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids. J Eng Mech 132:1–15CrossRefGoogle Scholar
  24. 24.
    Yu H, Wu L, Guo L, He Q, Du S (2010a) Interaction integral method for the interfacial fracture problems of two non-homogeneous materials. Mech Mat 42:435–450CrossRefGoogle Scholar
  25. 25.
    Yu H, Wu L, Guo L, Wu H, Du S (2010b) An interaction integral method for 3D curved cracks in nonhomogeneous materials with complex interfaces. Int.J Solids Struct 47:2178–2189CrossRefMATHGoogle Scholar
  26. 26.
    Zhu B, Shi Y, Qin T, Sukop M, Yu S, Li Y (2009) Mixed-mode stress intensity factors of 3D interface crack in fully coupled electromagnetothermoelastic multiphase composites. Int J Solids Struct 46:2669–2679CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Bhattacharya
    • 1
  • I. V. Singh
    • 1
  • B. K. Mishra
    • 1
  • T. Q. Bui
    • 2
  1. 1.Department of Mechanical and Industrial EngineeringIITRoorkeeIndia
  2. 2.Department of Civil EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations