Computational Mechanics

, Volume 52, Issue 2, pp 401–416 | Cite as

Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models

  • D. DoyenEmail author
  • A. Ern
  • S. Piperno
Original Paper


We investigate quasi-explicit time-integration schemes for solving dynamic fracture problems with set-valued cohesive zone models. These schemes combine a central difference time-integration scheme and a partially implicit and lumped treatment of the cohesive forces. At each time step, the displacements of the nodes in the interior of the domain are computed in an explicit way, while the displacements of each node at the interface are computed by solving a local nonlinear problem. The method provides a general and robust way of treating the set-valued cohesive zone model while keeping a moderate computational cost.


Cohesive zone model Finite elements Time-integration scheme 


  1. 1.
    Barenblatt G (1959) The formation of brittle cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. Appl Math Mech 23:1273–1282MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(2):55–129MathSciNetCrossRefGoogle Scholar
  3. 3.
    Broberg K (1999) Cracks and fracture. Academic Press, New YorkGoogle Scholar
  4. 4.
    Cagnetti F (2008) A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math Models Methods Appl Sci 18(7):1027–1071MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938zbMATHCrossRefGoogle Scholar
  6. 6.
    Cohen G, Joly P, Roberts J, Tordjman N (2001) Higher order triangular finite elements with mass lumping for the wave equation. SIAM J Numer Anal 38(6):2047–2078MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Corigliano A, Ricci M (2001) Rate-dependent interface models: formulation and numerical applications. Int J Solids Struct 38(4):547–576MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dal Maso G, Zanini C (2007) Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc R Soc Edinburgh Sect A 137(2):253–279MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Doyen D, Ern A (2009) Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem. Commun Math Sci 7(4):1063–1072MathSciNetzbMATHGoogle Scholar
  10. 10.
    Doyen D, Ern A, Piperno S (2010) A three-field augmented Lagrangian formulation of unilateral contact problems with cohesive forces. ESAIM Math Model Numer Anal 44(2):323–346MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRefGoogle Scholar
  12. 12.
    Falk M, Needleman A, Rice J (2001) A critical evaluation of cohesive zone models of dynamic fractur. J Phys IV 11(PR5) Google Scholar
  13. 13.
    Freund LB (1990) Dynamic fracture mechanics. Cambridge monographs on mechanics and applied mathematics. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Hecht F, Pironneau O. Freefem++.
  15. 15.
    Hughes TJR (1987) The finite element method. Prentice Hall Inc, Englewood CliffszbMATHGoogle Scholar
  16. 16.
    Lorentz E (2008) A mixed interface finite element for cohesive zone models. Comput Methods Appl Mech Eng 198(2):302–317zbMATHCrossRefGoogle Scholar
  17. 17.
    Marigo JJ, Truskinovsky L (2004) Initiation and propagation of fracture in the models of Griffith and Barenblatt. Contin Mech Thermodyn 16(4):391–409MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Paggi M, Carpinteri A, Zavarise G (2006) A unified interface constitutive law for the study of fracture and contact problems in heterogeneous materials. In: Wriggers P, Nackenhorst U (eds) Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics, vol 27. Springer, Berlin, pp 297–304CrossRefGoogle Scholar
  19. 19.
    Pandolfi A, Guduru PR, Ortiz M, Rosakis AJ (2000) Three dimensional cohesive-element analysis and experiments of dynamic fracture in c300 steel. Int J Solids Struct 37(27):3733–3760CrossRefGoogle Scholar
  20. 20.
    Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154CrossRefGoogle Scholar
  21. 21.
    Samudrala O, Huang Y, Rosakis AJ (2002) Subsonic and intersonic mode ii crack propagation with a rate-dependent cohesive zone. J Mech Phys Solids 50(6):1231–1268MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sharon E, Gross S, Fineberg J (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117–2120CrossRefGoogle Scholar
  23. 23.
    Talon C, Curnier A (2003) A model of adhesion coupled to contact and friction. Eur J Mech A Solids 22(4):545–565MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Turon A, Dvila C, Camanho P, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665–1682CrossRefGoogle Scholar
  25. 25.
    Willis JR (1967) A comparison of the fracture criteria of griffith and barenblatt. J Mech Phys Solids 15(3):151–162MathSciNetCrossRefGoogle Scholar
  26. 26.
    Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434zbMATHCrossRefGoogle Scholar
  27. 27.
    Zhou F, Molinari JF, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72(9):1383–1410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)Université Paris-EstMarne-la-ValléeFrance
  2. 2.Université Paris-EstMarne la Vallée Cedex 2France

Personalised recommendations