Advertisement

Computational Mechanics

, Volume 52, Issue 1, pp 1–16 | Cite as

A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

  • K. KamranEmail author
  • R. Rossi
  • E. Oñate
Original Paper

Abstract

The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

Keywords

PFEM Contact algorithm Thin shells Contact domain method Constrained Delaunay tetrahedralization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hallquist J, Goudreau G, Benson D (1985) Sliding interfaces with contact-impact in large-scale lagrangian computations. Comput Methods Appl Mech Eng 51: 107–137MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    El-Abbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79(16): 1473–1486CrossRefGoogle Scholar
  3. 3.
    Bernardi C, Debit N, Maday Y (1990) Coupling finite element and spectral methods—First results. Math Comput 54(189): 21–39MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hild P (2000) Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput Methods Appl Mech Eng 184(1): 99–123MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Hueber S, Wohlmuth BI (2005) A primal–dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194(27–29): 3147–3166MathSciNetCrossRefGoogle Scholar
  6. 6.
    Heintz P, Hansbo P (2006) Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33–36): 4323–4333MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Nitsche J (1971) Uber ein variationsprinzip zur losung von dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. In Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, vol~36. Springer, New York, pp 9–15Google Scholar
  8. 8.
    Wriggers P, Zavarise G (2004) Computational contact mechanics. Wiley, ChichesterGoogle Scholar
  9. 9.
    Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method. An overview. Int J Comput Methods 1(2): 267–307zbMATHCrossRefGoogle Scholar
  10. 10.
    Idelsohn SR, Oñate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7): 964–989zbMATHCrossRefGoogle Scholar
  11. 11.
    Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid–multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19): 1777–1800zbMATHCrossRefGoogle Scholar
  12. 12.
    Idelsohn SR, Celigueta MA, Rossi R, Oñate E, Latorre S (2010) Possibilities of the particle finite element method in computational mechanics. Comput Methods Mech 1: 271–310CrossRefGoogle Scholar
  13. 13.
    Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid– soil–structure interaction problems. Comput Mech 48(3): 307–318MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the particle finite-element method. J Eng Mech 136: 455CrossRefGoogle Scholar
  15. 15.
    Oliver J, Hartmann S, Cante JC, Weyler R, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput Methods Appl Mech Eng 198(33–36): 2591–2606zbMATHCrossRefGoogle Scholar
  16. 16.
    Hartmann S, Oliver J, Weyler R, Cante JC, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 2: numerical aspects. Comput Methods Appl Mech Eng 198(33–36): 2607–2631zbMATHCrossRefGoogle Scholar
  17. 17.
    Si H (2000) Tetgen: a quality tetrahedral mesh generator and a 3d Delaunay triangulator. de Haber E, Ascher UM, Aruliah DM, Oldenberg D (eds) Weierstrass Institute for Applied Analysis and Stochastics, pp 150–171Google Scholar
  18. 18.
    Kamran K, Rossi R, Idelsohn S, Oñate E (2012) Underwater implosion using the particle finite element method. Research Report, PI-371Google Scholar
  19. 19.
    Flores FG, Onate E (2005) Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach. Comput Methods Appl Mech Eng 194(6–8): 907–932zbMATHCrossRefGoogle Scholar
  20. 20.
    Onate E, Zarate F (2000) Rotation-free triangular plate and shell elements. Int J Numer Methods Eng 47(1–3): 557–603MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Onate E, Flores FG (2005) Advances in the formulation of the rotation-free basic shell triangle. Comput Methods Appl Mech Eng 194(21–24): 2406–2443zbMATHCrossRefGoogle Scholar
  22. 22.
    Onate E, Cervera M (1993) Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle. Eng Comput: Int J Comput-Aided Eng 10(6): 543–561Google Scholar
  23. 23.
    Crisfield MA (2000) Re-visiting the contact patch test. Int J Numer Methods Eng 48(3): 435–449zbMATHCrossRefGoogle Scholar
  24. 24.
    Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3): 253–297zbMATHCrossRefGoogle Scholar
  25. 25.
    Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E (2012) Migration of a generic multi-physics framework to HPC environments. International conference on parallel computational fluid dynamics. 23rd International conference on parallel computational fluid dynamics 2011, Barcelona, 2011, pp 1–5Google Scholar
  26. 26.
    GID (2012) the personal pre and postprocessor, p 11. http://www.gidhome.com. Accessed 17 Sept 2012
  27. 27.
    Updike DP (1972) On the large deformation of a rigid plastic spherical shell compressed by a rigid plate. J Eng Ind 94(3): 949–955CrossRefGoogle Scholar
  28. 28.
    Gupta NK, Mohamed Sheriff N, Velmurugan R (2007) Experimental and numerical investigations into collapse behaviour of thin spherical shells under drop hammer impact. Int J solids Struct 44(10): 3136–3155CrossRefGoogle Scholar
  29. 29.
    Cardoso RPR, Yoon JW, Grácio JJ, Barlat F, Cesarde Sa J (2002) Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy. Comput Methods Appl Mech Eng 191(45): 5177–5206zbMATHCrossRefGoogle Scholar
  30. 30.
    Zhong ZH (1993) Finite element procedures for contact-impact problems, vol 7. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5–8): 276–289MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.International Center for Numerical Methods in Engineering (CIMNE)Gran Capitán s/nBarcelonaSpain
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations