Advertisement

Computational Mechanics

, Volume 51, Issue 6, pp 1061–1073 | Cite as

Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms

  • Kenji Takizawa
  • Kathleen Schjodt
  • Anthony Puntel
  • Nikolay Kostov
  • Tayfun E. Tezduyar
Original Paper

Abstract

We present a patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. The analysis is based on four different arterial models extracted form medical images, and the stent is placed across the neck of the aneurysm to reduce the flow circulation in the aneurysm. The core computational technique used in the analysis is the space–time (ST) version of the variational multiscale (VMS) method and is called “DSD/SST-VMST”. The special techniques developed for this class of cardiovascular fluid mechanics computations are used in conjunction with the DSD/SST-VMST technique. The special techniques include NURBS representation of the surface over which the stent model and mesh are built, mesh generation with a reasonable resolution across the width of the stent wire and with refined layers of mesh near the arterial and stent surfaces, modeling the double-stent case, and quantitative assessment of the flow circulation in the aneurysm. We provide a brief overview of the special techniques, compute the unsteady flow patterns in the aneurysm for the four arterial models, and investigate in each case how those patterns are influenced by the presence of single and double stents.

Keywords

Cardiovascular fluid mechanics Patient-specific modeling Cerebral aneurysms Stent Double stent Mesh generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J A 70:1224–1231 (in Japanese)Google Scholar
  2. 2.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi: 10.1016/j.cma.2005.05.050 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi: 10.1007/s00466-006-0065-6 CrossRefzbMATHGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi: 10.1002/fld.1443 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi: 10.1016/j.compfluid.2005.07.014 CrossRefzbMATHGoogle Scholar
  7. 7.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi: 10.1002/fld.1497 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54: 593–608. doi: 10.1002/fld.1484 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi: 10.1002/fld.1633 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi: 10.1007/s00466-008-0325-8 CrossRefzbMATHGoogle Scholar
  11. 11.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178CrossRefGoogle Scholar
  13. 13.
    Maynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng 24: 367– 417CrossRefGoogle Scholar
  14. 14.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi: 10.1016/j.cma.2008.08.020 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi: 10.1002/cnm.1241 CrossRefzbMATHGoogle Scholar
  19. 19.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi: 10.1002/cnm.1289 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi: 10.1007/s00466-009-0439-7 CrossRefzbMATHGoogle Scholar
  23. 23.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46: 147–157MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  26. 26.
    Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog Pediatr Cardiol 30: 81–89CrossRefGoogle Scholar
  27. 27.
    Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26: 73–85CrossRefzbMATHGoogle Scholar
  28. 28.
    Bevan RLT, Nithiarasu P, Loon RV, Sazanov I, Luckraz H, Garnham A (2010) Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int J Numer Methods Fluids. doi: 10.1002/fld.2313 Google Scholar
  29. 29.
    Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P (2010) Non-Newtonian blood flow study in a model cavopulmonary vascular system. Int J Numer Methods Fluids. doi: 10.1002/fld.2256 zbMATHGoogle Scholar
  30. 30.
    Cebral JR, Mut F, Sforza D, Lohner R, Scrivano E, Lylyk P, Putnam C (2010) Clinical application of image-based cfd for cerebral aneurysms. Int J Numer Methods Biomed Eng. doi: 10.1002/cnm.1373 Google Scholar
  31. 31.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi: 10.1002/fld.2360 CrossRefzbMATHGoogle Scholar
  32. 32.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi: 10.1002/fld.2415 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi: 10.1002/fld.2448 CrossRefzbMATHGoogle Scholar
  34. 34.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27: 1665–1710. doi: 10.1002/cnm.1433 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599MathSciNetCrossRefGoogle Scholar
  36. 36.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384. doi: 10.1007/s00466-011-0619-0 CrossRefzbMATHGoogle Scholar
  37. 37.
    Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79: 010908. doi: 10.1115/1.4005071 CrossRefGoogle Scholar
  38. 38.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225. doi: 10.1007/s11831-012-9071-3 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech. doi: 10.1007/s00466-012-0760-4 MathSciNetGoogle Scholar
  40. 40.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi: 10.1002/fld.505 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi: 10.1002/fld.1430 MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi: 10.1007/s00466-011-0571-z MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22: 1230001. doi: 10.1142/S0218202512300013 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi: 10.1016/0045-7825(92)90141-6 CrossRefzbMATHGoogle Scholar
  50. 50.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401CrossRefzbMATHGoogle Scholar
  51. 51.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799CrossRefGoogle Scholar
  52. 52.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229: 3402–3414MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344. doi: 10.1007/s00466-011-0589-2 CrossRefzbMATHGoogle Scholar
  55. 55.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657. doi: 10.1007/s00466-011-0614-5 CrossRefzbMATHGoogle Scholar
  56. 56.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79: 010903. doi: 10.1115/1.4005073 CrossRefGoogle Scholar
  57. 57.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech. doi: 10.1007/s00466-012-0759-x Google Scholar
  58. 58.
    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech. doi: 10.1007/s00466-012-0758-y Google Scholar
  59. 59.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi: 10.1002/fld.2359 CrossRefzbMATHGoogle Scholar
  60. 60.
    Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, BarcelonaGoogle Scholar
  61. 61.
    Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds.) International workshop on fluid–structure interaction—-theory, numerics and applications. Kassel University Press, Kassel, pp 231–252. ISBN 978-3-89958-666-4Google Scholar
  62. 62.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward integration of CAD and FEA. Wiley, New YorkCrossRefGoogle Scholar
  64. 64.
    Rhee K, Han MH, Cha SH, Khang G (2001) The changes of flow characteristics caused by a stent in fusiform aneurysm models, Engineering in Medicine and Biology Society, 2001. Proc 23rd Annu Int Conf IEEE 1: 86–88. doi: 10.1109/IEMBS.2001.1018852 Google Scholar
  65. 65.
    Jou L-D, Mawad ME (2011) Hemodynamic effect of neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med Eng Phys 33: 573–580. doi: 10.1016/j.medengphy.2010.12.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Kathleen Schjodt
    • 2
  • Anthony Puntel
    • 2
  • Nikolay Kostov
    • 2
  • Tayfun E. Tezduyar
    • 2
  1. 1.Department of Modern Mechanical Engineering, Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations