Advertisement

Computational Mechanics

, Volume 50, Issue 6, pp 789–804 | Cite as

Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves

  • Jianyao Yao
  • G. R. Liu
  • Daria A. Narmoneva
  • Robert B. Hinton
  • Zhi-Qian Zhang
Original Paper

Abstract

This paper presents a novel numerical method for simulating the fluid–structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.

Keywords

Fluid–structure interaction Immersed smoothed finite element method Fictitious fluid Characteristic-based split Aortic valve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosamond W, Flegal K et al (2008) Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4): e25–e146CrossRefGoogle Scholar
  2. 2.
    Lloyd-Jones D, Adams RJ et al (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(4): e135CrossRefGoogle Scholar
  3. 3.
    Roger VL, Go AS et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(4): e122–e130Google Scholar
  4. 4.
    Yacoub MH, Takkenherg JJ (2005) Will heart valve tissue engineering change the world?. Nat Clin Pract Cardiovasc Med 2: 60–61CrossRefGoogle Scholar
  5. 5.
    Bonow RO et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114: e84–e231CrossRefGoogle Scholar
  6. 6.
    Subramanian S, Borger MA (2010) Aortic valve reconstruction: current status. Herz 35: 88–93CrossRefGoogle Scholar
  7. 7.
    Croft LR, Mofrad MRK (2010) Computational modeling of aortic heart valves, Chap. 7. In: De S, Guilak F, Mofrad MRK (eds) Computational modeling in biomechanics. Springer, New YorkGoogle Scholar
  8. 8.
    Labrosse MR, Lobo K, Beller CJ (2010) Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J Biomech 43: 1916–1922CrossRefGoogle Scholar
  9. 9.
    Labrosse MR, Boodhwani M, Sohmer B, Beller CJ (2011) Modeling leaflet correction techniques in aortic valve repair: A finite element study. J Biomech 44: 2292–2298CrossRefGoogle Scholar
  10. 10.
    Grande-Allen KJ et al (2001) Finite-element analysis of aortic valve-sparing: influence of graft and stiffness. IEEE Trans Biomed Eng 48: 647–659CrossRefGoogle Scholar
  11. 11.
    Howard IC, Patterson EA, Yoxall A (2003) On the opening mechanism of the aortic valve: some observations from simulations. J Med Eng Technol 27: 259–266CrossRefGoogle Scholar
  12. 12.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33: 689– 723zbMATHCrossRefGoogle Scholar
  14. 14.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid–structure interaction techniques. Comput Mech 48: 247–267MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Model Methods Appl Sci 22: 1230001CrossRefGoogle Scholar
  18. 18.
    Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36CrossRefGoogle Scholar
  19. 19.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94zbMATHCrossRefGoogle Scholar
  20. 20.
    Stein K, Tezduyar TE, Benney R (2003) Mesh Moving Techniques for Fluid-Structure Interactions with Large Displacements. J Appl Mech 70: 58–63zbMATHCrossRefGoogle Scholar
  21. 21.
    Stein K, Tezduyar TE, Benney R (2004) Automatic Mesh Update with the Solid-Extension Mesh Moving Technique. Comput Methods Appl Mech Eng 193: 2019–2032zbMATHCrossRefGoogle Scholar
  22. 22.
    Johnson AA, Tezduyar TE (1999) Advanced Mesh Generation and Update Methods for 3D Flow Simulations. Comput Mech 23: 130–143zbMATHCrossRefGoogle Scholar
  23. 23.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364zbMATHCrossRefGoogle Scholar
  24. 24.
    Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Model Methods Appl Sci 22: 1230002CrossRefGoogle Scholar
  25. 25.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19: 171–225MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech 46: 31–41MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid-structure interaction modeling of aneurysms. Comput Mech 46: 43–52zbMATHCrossRefGoogle Scholar
  29. 29.
    Moireau P, Xiao N, Astorino M et al (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11: 1–18CrossRefGoogle Scholar
  30. 30.
    Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10: 96–103CrossRefGoogle Scholar
  31. 31.
    Marom G, Haj-Ali R, Raanani E et al (2012) A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50: 173–182CrossRefGoogle Scholar
  32. 32.
    Peskin CS (1977) Numerical-analysis of blood-flow in heart. J Comput Phys 25(3): 220–252MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Peskin CS, McQueen DM (1995) A general method for the computer simulation of biological systems interacting with fluids. Sym Soc Exp Biol 49: 265–276Google Scholar
  34. 34.
    Peskin CS (2002) The immersed boundary method. Acta Numer 11: 479–517MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Griffith BE, Luo X, Mc McQueen DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 1(1): 137–177CrossRefGoogle Scholar
  36. 36.
    De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2000) A two-dimensional fluid-structure interaction model of the aortic valve. J Biomech 33: 1079–1088CrossRefGoogle Scholar
  37. 37.
    De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2003) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36: 103–112CrossRefGoogle Scholar
  38. 38.
    De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37: 303–311CrossRefGoogle Scholar
  39. 39.
    Zhang L, Gerstenherger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193: 2051–2067zbMATHCrossRefGoogle Scholar
  40. 40.
    Liu WK, Liu Y, Farrell D et al (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195: 1722–1749MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Zhang LT, Gay M (2007) Immersed finite element method for fluid-structure interactions. J Fluid Struct 23: 839–857CrossRefGoogle Scholar
  42. 42.
    Zhang ZQ, Yao JY, Liu GR (2011) An immersed smoothed finite element method for fluid-structure interaction problems. Int J Comput Methods 8(4): 747–757MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Zhang ZQ, Liu GR, Khoo BC (2012) A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems. Comput Mech. doi: 10.1007/s00466-012-0710-1
  44. 44.
    Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320(4–5): 1100–1130CrossRefGoogle Scholar
  45. 45.
    Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Liu GR, Nguyen-Thoi T (2010) Smoothed finite element methods. CRC Press.Google Scholar
  47. 47.
    Zienkiewicz OC, Tayler RL (2000) The finite element method, Vol. 3: Fluid dynamics, 5 edn. Butterworth-Heinemann, OxfordGoogle Scholar
  48. 48.
    Zienkiewicz OC, Nithiarasu P, Codina R et al (1999) The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Methods Fluids 31(1): 359–392MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Nithiarasu P, Mathur JS, Weatherill NP, Morgan K (2004) Three-dimensional incompressible flow calculations using the characteristic based split (CBS) scheme. Int J Numer Methods Fluids 44: 1207–1229MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Löhner R (1995) Robust, vectorized search algorithm for interpolation on unstructured grids. J Comput Phys 118: 380–387zbMATHCrossRefGoogle Scholar
  51. 51.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ (2006) Geometric modeling of functional trileaflet aortic valves: development and clinical applications. J Biomech 39: 2665–2672CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jianyao Yao
    • 1
  • G. R. Liu
    • 1
  • Daria A. Narmoneva
    • 2
  • Robert B. Hinton
    • 3
  • Zhi-Qian Zhang
    • 4
  1. 1.School of Aerospace Systems, College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.Division of Cardiology, The Heart InstituteCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.Singapore-MIT Alliance (SMA)National University of SingaporeSingaporeSingapore

Personalised recommendations