Advertisement

Computational Mechanics

, Volume 51, Issue 6, pp 961–974 | Cite as

A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets

  • Ravindra DudduEmail author
  • Haim Waisman
Original Paper

Abstract

We present a Lagrangian finite element formulation aimed at modeling creep fracture in ice-sheets using nonlocal continuum damage mechanics. The proposed formulation is based on a thermo-viscoelastic constitutive model and a creep damage model for polycrystalline ice with different behavior in tension and compression. In this paper, mainly, we detail the nonlocal numerical implementation of the constitutive damage model into commercial finite element codes (e.g. Abaqus), wherein a procedure to handle the abrupt failure (rupture) of ice under tension is proposed. Then, we present numerical examples of creep fracture under four-point bending, uniaxial tension, and biaxial tension in order to illustrate the viability of the current approach. Finally, we present simulations of creep crack propagation in idealized rectangular ice slabs so as to estimate calving rates at low deformation rates. The examples presented demonstrate the mesh size and mesh directionality independence of the proposed nonlocal implementation.

Keywords

Ice mechanics Creep fracture Anisotropic damage Finite element simulation Nonlocal integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schulson EM, Duval P (2009) Creep and fracture of ice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Bassis JN, Fricker HA, Coleman R, Minster J (2008) An investigation into the forces that drive ice-shelf rift propagation on the amery ice shelf, East Antarctica. J Glaciol 54(184): 17–27CrossRefGoogle Scholar
  3. 3.
    van der Veen CJ (1998) Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg Sci Technol 27: 31–47CrossRefGoogle Scholar
  4. 4.
    Rist MA, Sammonds PR, Oerter H, Doake CSM (2002) Fracture of Antarctic shelf ice. J Geophys Res Solid Earth 107(B1): 2002CrossRefGoogle Scholar
  5. 5.
    Alley RB, Dupont TK, Parizek BR, Anandakrishnan S (2005) Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Ann Glaciol 40(1): 8–14CrossRefGoogle Scholar
  6. 6.
    van der Veen CJ (2007) Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys Res Lett 3(1): L01501CrossRefGoogle Scholar
  7. 7.
    Nick FM, vander Veen CJ, Benn DI (2010) A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. J Glaciol 56(199): 781–794CrossRefGoogle Scholar
  8. 8.
    Hutter K (1983) Theoretical glaciology: material science of ice and the mechanics of glaciers and ice sheets. Springer, New YorkGoogle Scholar
  9. 9.
    Mahrenholtz O, Wu Z (1992) Determination of creep damage parameters for polycrystalline ice. Paper presented at third international conference on ice technology, advances in ice technology, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  10. 10.
    Al-Rub RKA, Voyiadjis GZ (2006) A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: part I—theoretical formulation. Int J Damage Mech 15(4): 293–334CrossRefGoogle Scholar
  11. 11.
    Lemaitre J (1992) A course on damage mechanics. Springer, New YorkzbMATHGoogle Scholar
  12. 12.
    Karr DG, Choi K (1989) A three-dimensional constitutive damage model for polycrystalline ice. Mech Mater 8(1): 55–66CrossRefGoogle Scholar
  13. 13.
    Wu Z, Mahrenholtz O (1993) Creep and creep damage of polycrystalline ice under multi-axial variable loading. Paper presented at 12th international conference on offshore mechanics and Arctic engineering, ASME, GlasgowGoogle Scholar
  14. 14.
    Pralong A, Funk M (2005) Dynamic damage model of crevasse opening and application to glacier calving. J Geophys Res Solid Earth 110(B1): B1309CrossRefGoogle Scholar
  15. 15.
    Murakami S (1983) Notion of continuum damage mechanics and its application to anisotropic creep damage theory. J Eng Mater Technol Trans ASME 105(2): 99–105CrossRefGoogle Scholar
  16. 16.
    Murakami S, Kawai M, Rong H (1988) Finite-element analysis of creep crack-growth by a local approach. Int J Mech Sci 30(7): 491–502CrossRefGoogle Scholar
  17. 17.
    Duddu R, Waisman H (2012) A temperature dependent creep damage model for polycrystalline ice. Mech Mater 46: 23–41CrossRefGoogle Scholar
  18. 18.
    Bazant ZP (1986) Mechanics of distributed cracking: review paper. Appl Mech Rev 39: 665–705CrossRefGoogle Scholar
  19. 19.
    Hall FR, Hayhurst DR (1991) Modelling of grain size effects in creep crack growth using a non-local continuum damage. Proc Math Phys Sci 433(1888): 405–421zbMATHCrossRefGoogle Scholar
  20. 20.
    Zolochevsky Z, Sklepus S, Hyde TH, Becker AA, Peravali S (2009) Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions. Int J Numer Methods Eng 80(11): 1406–1436zbMATHCrossRefGoogle Scholar
  21. 21.
    Murakami S, Liu Y, Mizuno M (2000) Computational methods for creep fracture analysis by damage mechanics. Comput Methods Appl Mech Eng 183: 15–33zbMATHCrossRefGoogle Scholar
  22. 22.
    Pijaudier-Cabot G, Bazant Z (1987) Nonlocal damage theory. J Eng Mech 113: 1512–1533CrossRefGoogle Scholar
  23. 23.
    Bazant ZP, Pijaudier-Cabot G (1988) Non-local continuum damage localisation instability and convergence. J Appl Mech 55: 287–293zbMATHCrossRefGoogle Scholar
  24. 24.
    Peerlings RHJ, DeBorst R, Brekelmans WAM, DeVree JHP (1996) Gradient-enhanced damage model for quasi-brittle materials. Int J Numer Methods Eng 39(19): 391–403CrossRefGoogle Scholar
  25. 25.
    Peerlings RHJ, Geers MGD, De Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38: 7723–7746zbMATHCrossRefGoogle Scholar
  26. 26.
    Verhoosel CV, Scott MA, Hughes TJR, de Borst R (2011) An isogeometric analysis approach to gradient damage models. Int J Numer Methods Eng 86(1): 115–134zbMATHCrossRefGoogle Scholar
  27. 27.
    Al-Rub RKA, Darabi MK, Masad EA (2010) A straightforward numerical technique for finite element implementation of nonlocal gradient-dependent continuum damage mechanics theories. Int J Theor Appl Multiscale Mech 1(4): 352–385CrossRefGoogle Scholar
  28. 28.
    Hsia KJ, Argon AS, Parks DM (1991) Modeling of creep damage evolution around blunt notches and sharp cracks. Mech Mater 11(1): 19–42CrossRefGoogle Scholar
  29. 29.
    Wang XN, Wang XC (1996) Finite element analysis on creep damage. Comput Struct 60(5): 781–786zbMATHCrossRefGoogle Scholar
  30. 30.
    Becker AA, Hyde TH, Sun W, Andersson P (2002) Benchmarks for finite element analysis of creep continuum damage mechanics. Comput Mater Sci 25(1-2): 34–41CrossRefGoogle Scholar
  31. 31.
    Desmorat R, Gatuingt F, Ragueneau F (2007) Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials. Eng Fract Mech 74: 1539–1560CrossRefGoogle Scholar
  32. 32.
    Jirasek M, Grassl P (2008) Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng Fract Mech 75: 1921–1943CrossRefGoogle Scholar
  33. 33.
    Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20: 1081–1106MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Liu WK, Hao S, Belytschko T, Li S-F, Chang CT (1995) Multiple scale meshfree methods for damage fracture and localization. Comput Mater Sci 16: 197–205CrossRefGoogle Scholar
  35. 35.
    Simo JC, Ju JW (1987) Strain-based and stress-based continuum damage models 1 formulation. Int J Solids Struct 23(7): 821–840zbMATHCrossRefGoogle Scholar
  36. 36.
    Murakami S, Ohno N (1980) A continuum theory of creep and creep damage. Paper presented at 3rd symposium creep in structures, international union of theoretical and applied mechanics, LeicasterGoogle Scholar
  37. 37.
    Chen XF, Chow CL (1995) On damage strain energy release rate Y. Int J Damage Mech 4(1): 251–263CrossRefGoogle Scholar
  38. 38.
    Qi W, Bertram A (1999) Anisotropic continuum damage modeling for single crystals at high temperatures. Int J Plast 15(11): 1197–1215zbMATHCrossRefGoogle Scholar
  39. 39.
    Lemaitre J (1971) Evaluation of dissipation and damage in metals. In: Proceedings of the international congress on the mechanical behavior of materials. I.C.M., Kyoto, p 1Google Scholar
  40. 40.
    Riedel H (1997) Fracture at high temperatures. Springer, BerlinGoogle Scholar
  41. 41.
    Glen JW (1955) The creep of polycrystalline ice. Proc R Soc Lond A Math Phys Sci 228(1175): 519–538CrossRefGoogle Scholar
  42. 42.
    Schulson EM (1997) The brittle failure of ice under compression. J Phys Chem B 101(32): 6254–6258CrossRefGoogle Scholar
  43. 43.
    Budd WF, Jacka TH (1989) A review of ice rheology for ice-sheet modeling. Cold Reg Sci Technol 16(2): 107–144CrossRefGoogle Scholar
  44. 44.
    Voyiadjis GZ, Al-Rub RKA, Palazotto AN (2004) Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory. Int J Plast 20(6): 981–1038zbMATHCrossRefGoogle Scholar
  45. 45.
    de Borst R, Sluys LJ, Mühlhaus H-B, Pamin J (1993) Fundamental issues in finite element analysis of localization of deformation. Eng Comput 10: 99–121CrossRefGoogle Scholar
  46. 46.
    Hibbitt, Karlsson, Sorensen, Inc. (2011) Abaqus/standard user’s manual v. 6.9. Pawtucket, Rhode IslandGoogle Scholar
  47. 47.
    Chow CL, Mao J, Shen J (2011) Nonlocal damage gradient model for fracture characterization of aluminum alloy. Int J Damage Mech 20(7): 1073–1093CrossRefGoogle Scholar
  48. 48.
    Jirasek M, Patzák B (2002) Consistent tangent stiffness for nonlocal damage models. Comput Struct 80(14–15): 1279–1293CrossRefGoogle Scholar
  49. 49.
    Krausz AS (1963) The creep of ice in bending. Can J Phys 41(1): 167–177CrossRefGoogle Scholar
  50. 50.
    Bazant Z, Xi Y, Reid S (1991) Statistical size effect in quasi-brittle structures: II nonlocal theory. J Eng Mech 117(11): 2623–2640CrossRefGoogle Scholar
  51. 51.
    Bazant ZP (1999) Size effect on structural strength: a review. Arch Appl Mech 69(9–10): 703–725zbMATHGoogle Scholar
  52. 52.
    Ganczarski A, Skrzypek J (2001) Application of the modified Murakami’s anisotropic creep damage model to 3D rotationally-symmetric problem. Tech Mech 21(4): 251–260Google Scholar
  53. 53.
    Weertman J (1957) On the sliding of glaciers. J Glaciol 3(21): 33–38Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Civil Engineering and Engineering MechanicsColumbia UniversityNew YorkUSA
  2. 2.Department of Civil and Environmental EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations