Advertisement

Computational Mechanics

, Volume 50, Issue 6, pp 707–718 | Cite as

Parallel BDD-based monolithic approach for acoustic fluid-structure interaction

  • Satsuki Minami
  • Hiroshi Kawai
  • Shinobu Yoshimura
Original Paper

Abstract

Parallel BDD-based monolithic algorithms for acoustic fluid-structure interaction problems are developed. In a previous study, two schemes, NN-I + CGC-FULL and NN-I + CGC-DIAG, have been proven to be efficient among several BDD-type schemes for one processor. Thus, the parallelization of these schemes is discussed in the present study. These BDD-type schemes consist of the operations of the Schur complement matrix-vector (Sv) product, Neumann-Neumann (NN) preconditioning, and the coarse problem. In the present study, the Sv product and NN preconditioning are parallelized for both schemes, and the parallel implementation of the solid and fluid parts of the coarse problem is considered for NN-I + CGC-DIAG. The results of numerical experiments indicate that both schemes exhibit performances that are almost as good as those of single solid and fluid analyses in the Sv product and NN preconditioning. Moreover, NN-I + CGC-DIAG appears to become more efficient as the problem size becomes large due to the parallel calculation of the coarse problem.

Keywords

Acoustic fluid-structure interaction Balancing Domain Decomposition method Monolithic approach Parallel analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  2. 2.
    Morland HJ-P, Ohayon R (1995) Fluid structure interaction: applied numerical methods. Wiley, NYGoogle Scholar
  3. 3.
    Mandel J (2002) An iterative substructuring method for coupled fluid-solid acoustic problems. J Comput Phys 176: 1–22MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ross MR, Felippa CA, Park KC, Sprague MA (2008) Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers: formulation. Comput Methods Appl Mech Eng 197: 3057–3079MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Park KC, Felippa CA, Ohayon R (2001) Partitioned formulation of internal fluid-structure interaction problems by localized Lagrange multipliers. Comput Methods Appl Mech Eng 190(24–25): 2989–3007zbMATHCrossRefGoogle Scholar
  6. 6.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid-structure interaction modeling and performance analysis of the orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285zbMATHCrossRefGoogle Scholar
  7. 7.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid-structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307zbMATHCrossRefGoogle Scholar
  8. 8.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364zbMATHCrossRefGoogle Scholar
  9. 9.
    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19: 125–169MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332zbMATHCrossRefGoogle Scholar
  11. 11.
    Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24-25): 3039–3067zbMATHCrossRefGoogle Scholar
  12. 12.
    Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195: 2028–2049MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Michler C, van Brummelen EH, de Borst R (2004) An interface Newton-Krylov solver for fluid-structure interaction. Int J Numer Methods Fluids 47(10-11): 1189–1195CrossRefGoogle Scholar
  14. 14.
    Heil M (2004) An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems. Comput Methods Appl Mech Eng 193: 1–23MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Methods Eng 64: 167–203zbMATHCrossRefGoogle Scholar
  16. 16.
    Liew KM, Wang WQ, Zhang LX, He XQ (2007) A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation. Int J Numer Methods Eng 72: 1560–1583MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Washio T, Hisada T, Watanabe H, Tezduyar TE (2005) A robust preconditioner for fluid-structure interaction problems. Comput Methods Appl Mech Eng 194: 4027–4047MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Badia S, Quaini A, Quarteroni A (2008) Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Comput Methods Appl Mech Eng 197: 4216–5232MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kuttler U, Gee M, Forster Ch, Comerford A, Wall WA (2010) Coupling strategies for biomedical fluid-structure interaction problems. Int J Numer Methods Eng 26: 305–321MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195(41–43): 5743–5753MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid: structure interaction techniques. Comput Mech 48: 247–267MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49zbMATHCrossRefGoogle Scholar
  25. 25.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142zbMATHCrossRefGoogle Scholar
  26. 26.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19: 171–225MathSciNetCrossRefGoogle Scholar
  27. 27.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89zbMATHCrossRefGoogle Scholar
  28. 28.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384zbMATHCrossRefGoogle Scholar
  29. 29.
    Minami S, Kawai H, Yoshimura S (2012) A monolithic approach based on Balancing Domain Decomposition method for acoustic fluid-structure interaction. J Appl Mech 79: 010906CrossRefGoogle Scholar
  30. 30.
    Mandel J (1993) Balancing domain decomposition. Commun Numer Meth Eng 9: 233–241MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ogino M, Shioya R, Kawai H, Yoshimura S (2005) Seismic response analysis of nuclear pressure vessel model with ADVENTRUE system on the Earth simulator. J Earth Simulator 2: 41–54Google Scholar
  32. 32.
    Ogino M, Shioya R, Kanayama H (2008) An inexact Balancing preconditioner for large-scale structural analysis. J. Comput. Sci. Tech 2:150–161CrossRefGoogle Scholar
  33. 33.
    Mukaddes AMM, Ogino M, Kanayama H, Shioya R (2006) A scalable Balancing Domain Decomposition based preconditioner for large scale heat transfer problems. JSME Int J 49(2): 533–540CrossRefGoogle Scholar
  34. 34.
    Yagawa G, Shioya R (1994) Parallel finite elements on a massively parallel computer with domain decomposition. Comput Syst Eng 4: 495–503CrossRefGoogle Scholar
  35. 35.
    Shioya R, Yagawa G (2001) Parallel finite element analysis of 100 million DOFs based on the hierarchical domain decomposition method. Trans JSCES 3: 201–206Google Scholar
  36. 36.
    Ogino M, Shioya R, Kanayama H, Tagami D, Yoshimura S (2003) Parallel elastic finite element analysis using the balancing domain decomposition. Trans Jpn Soc Mech Eng A 69(685): 36–43CrossRefGoogle Scholar
  37. 37.
    Kawai H, Ogino M, Shioya R, Yoshimura S (2010) A parallel skyline solver for coarse grid correction of BDD pre-conditioning in domain decomposition method, Broadband, International Conference on Broadband and Wireless Computing, Communication and ApplicationsGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Satsuki Minami
    • 1
  • Hiroshi Kawai
    • 2
  • Shinobu Yoshimura
    • 1
  1. 1.Department of Systems InnovationThe University of TokyoTokyoJapan
  2. 2.Department of Mechanical Systems EngineeringTokyo University of ScienceNaganoJapan

Personalised recommendations