Advertisement

Computational Mechanics

, Volume 50, Issue 6, pp 675–686 | Cite as

Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent

  • Kenji Takizawa
  • Kathleen Schjodt
  • Anthony Puntel
  • Nikolay Kostov
  • Tayfun E. Tezduyar
Original Paper

Abstract

We present the special arterial fluid mechanics techniques we have developed for patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. These techniques are used in conjunction with the core computational technique, which is the space–time version of the variational multiscale (VMS) method and is called “DST/SST-VMST.” The special techniques include using NURBS for the spatial representation of the surface over which the stent mesh is built, mesh generation techniques for both the finite- and zero-thickness representations of the stent, techniques for generating refined layers of mesh near the arterial and stent surfaces, and models for representing double stent. We compute the unsteady flow patterns in the aneurysm and investigate how those patterns are influenced by the presence of single and double stents. We also compare the flow patterns obtained with the finite- and zero-thickness representations of the stent.

Keywords

Cardiovascular fluid mechanics Patient-specific modeling Cerebral aneurysms Stent Mesh generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 (in Japanese)CrossRefGoogle Scholar
  2. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi: 10.1016/j.cma.2005.05.050 MathSciNetzbMATHCrossRefGoogle Scholar
  3. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi: 10.1007/s00466-006-0065-6 zbMATHCrossRefGoogle Scholar
  4. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetzbMATHCrossRefGoogle Scholar
  5. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi: 10.1002/fld.1443 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi: 10.1016/j.compluid.2005.07.014 zbMATHCrossRefGoogle Scholar
  7. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi: 10.1002/fld.1497 MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54: 593–608. doi: 10.1002/fld.1484 MathSciNetzbMATHCrossRefGoogle Scholar
  9. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi: 10.1002/fld.1633 MathSciNetzbMATHCrossRefGoogle Scholar
  10. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi: 10.1007/s00466-008-0325-8 zbMATHCrossRefGoogle Scholar
  11. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37MathSciNetzbMATHCrossRefGoogle Scholar
  12. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178CrossRefGoogle Scholar
  13. Maynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng 24: 367–417CrossRefGoogle Scholar
  14. Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetzbMATHCrossRefGoogle Scholar
  15. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi: 10.1016/j.cma.2008.08.020 MathSciNetzbMATHCrossRefGoogle Scholar
  16. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  17. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89MathSciNetzbMATHCrossRefGoogle Scholar
  18. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi: 10.1002/cnm.1241 zbMATHCrossRefGoogle Scholar
  19. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetzbMATHCrossRefGoogle Scholar
  20. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetzbMATHCrossRefGoogle Scholar
  21. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi: 10.1002/cnm.1289 MathSciNetzbMATHCrossRefGoogle Scholar
  22. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi: 10.1007/s00466-009-0439-7 zbMATHCrossRefGoogle Scholar
  23. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetzbMATHCrossRefGoogle Scholar
  24. Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46: 147–157MathSciNetzbMATHCrossRefGoogle Scholar
  25. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  26. Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Progr Pediatr Cardiol 30: 81–89CrossRefGoogle Scholar
  27. Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26: 73–85zbMATHCrossRefGoogle Scholar
  28. Bevan RLT, Nithiarasu P, Loon RV, Sazanov I, Luckraz H, Garnham A (2010) Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int J Numer Methods Fluids (published online). doi: 10.1002/fld.2313
  29. Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P (2010) Non-Newtonian blood flow study in a model cavopulmonary vascular system. Int J Numer Methods Fluids (published online). doi: 10.1002/fld.2256
  30. Cebral JR, Mut F, Sforza D, Lohner R, Scrivano E, Lylyk P, Putnam C (2010) Clinical application of image-based cfd for cerebral aneurysms. Int J Numer Methods Biomed Eng (published online) doi: 10.1002/cnm.1373
  31. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi: 10.1002/fld.2360 zbMATHCrossRefGoogle Scholar
  32. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi: 10.1002/fld.2415 MathSciNetzbMATHCrossRefGoogle Scholar
  33. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi: 10.1002/fld.2448 zbMATHCrossRefGoogle Scholar
  34. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27: 1665–1710. doi: 10.1002/cnm.1433 MathSciNetzbMATHCrossRefGoogle Scholar
  35. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elements Anal Design 47: 593–599MathSciNetCrossRefGoogle Scholar
  36. Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79 010908. doi: 10.1115/1.4005071 CrossRefGoogle Scholar
  37. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384. doi: 10.1007/s00466-011-0619-0 zbMATHCrossRefGoogle Scholar
  38. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225. doi: 10.1007/s11831-012-9071-3 MathSciNetCrossRefGoogle Scholar
  39. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetzbMATHCrossRefGoogle Scholar
  40. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi: 10.1109/2.237441 CrossRefGoogle Scholar
  41. Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the Connection Machine. Comput Methods Appl Mech Eng 108: 99–118. doi: 10.1016/0045-7825(93)90155-Q MathSciNetzbMATHCrossRefGoogle Scholar
  42. Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi: 10.1016/0045-7825(94)00082-4 zbMATHCrossRefGoogle Scholar
  43. Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi: 10.1016/0045-7825(94)90029-9 MathSciNetzbMATHCrossRefGoogle Scholar
  44. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953. doi: 10.1002/fld.1650211011 zbMATHCrossRefGoogle Scholar
  45. Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi: 10.1002/fld.1650211003 MathSciNetzbMATHCrossRefGoogle Scholar
  46. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi: 10.1007/BF00350249 zbMATHCrossRefGoogle Scholar
  47. Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C zbMATHCrossRefGoogle Scholar
  48. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi: 10.1007/s004660050393 zbMATHCrossRefGoogle Scholar
  49. Behr M, Tezduyar T (1999) The Shear-Slip Mesh Update Method. Comput Methods Appl Mech Eng 174: 261–274. doi: 10.1016/S0045-7825(98)00299-0 zbMATHCrossRefGoogle Scholar
  50. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi: 10.1016/S0045-7825(00)00204-8 zbMATHCrossRefGoogle Scholar
  51. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386. doi: 10.1016/S0045-7825(00)00208-5 zbMATHCrossRefGoogle Scholar
  52. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi: 10.1007/BF02897870 zbMATHCrossRefGoogle Scholar
  53. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726. doi: 10.1016/S0045-7825(01)00311-5 zbMATHCrossRefGoogle Scholar
  54. Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191: 673–687. doi: 10.1016/S0045-7825(01)00312-7 zbMATHCrossRefGoogle Scholar
  55. Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  56. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi: 10.1016/S0045-7825(00)00388-1 zbMATHCrossRefGoogle Scholar
  57. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi: 10.1115/1.1530635 zbMATHCrossRefGoogle Scholar
  58. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi: 10.1016/j.cma.2003.12.046 zbMATHCrossRefGoogle Scholar
  59. van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621MathSciNetzbMATHCrossRefGoogle Scholar
  60. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi: 10.1016/j.cma.2004.09.014 MathSciNetzbMATHCrossRefGoogle Scholar
  61. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi: 10.1016/j.cma.2005.08.023 MathSciNetzbMATHCrossRefGoogle Scholar
  62. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi: 10.1016/j.compfluid.2005.02.011 MathSciNetzbMATHCrossRefGoogle Scholar
  63. Brenk M, Bungartz H-J, Mehl M, Neckel T (2006) Fluid–structure interaction on Cartesian grids: flow simulation and coupling environment. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53 of lecture notes in computational science and engineering. Springer, pp 233–269Google Scholar
  64. Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53 of lecture notes in computational science and engineering. Springer, pp 82–100Google Scholar
  65. Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction vol 53 of lecture notes in computational science and engineering. Springer, pp 336–355Google Scholar
  66. Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146zbMATHCrossRefGoogle Scholar
  67. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi: 10.1002/fld.1430 MathSciNetzbMATHCrossRefGoogle Scholar
  68. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183. doi: 10.1007/s00466-006-0093-2 zbMATHCrossRefGoogle Scholar
  69. Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019. doi: 10.1002/fld.1466 zbMATHCrossRefGoogle Scholar
  70. Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54: 841–853. doi: 10.1002/fld.1473 MathSciNetzbMATHCrossRefGoogle Scholar
  71. Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi: 10.1007/s00466-008-0276-0 MathSciNetzbMATHCrossRefGoogle Scholar
  72. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi: 10.1007/s00466-008-0261-7 zbMATHCrossRefGoogle Scholar
  73. Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi: 10.1007/s00466-008-0260-8 zbMATHCrossRefGoogle Scholar
  74. Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi: 10.1007/s00466-008-0299-6 MathSciNetzbMATHCrossRefGoogle Scholar
  75. Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90zbMATHCrossRefGoogle Scholar
  76. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150MathSciNetzbMATHCrossRefGoogle Scholar
  77. Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid–structure interaction simulations using an implicit partitioned approach. Comput Mech 43: 103–113zbMATHCrossRefGoogle Scholar
  78. Mehl M, Brenk M, Bungartz H-J, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43: 115–124zbMATHCrossRefGoogle Scholar
  79. Idelsohn SR, Marti J, Souto-Iglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43: 125–132zbMATHCrossRefGoogle Scholar
  80. Idelsohn SR, Marti J, Limache A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197: 1762–1776MathSciNetzbMATHCrossRefGoogle Scholar
  81. Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi: 10.1115/1.3059576 CrossRefGoogle Scholar
  82. Idelsohn SR, Pin FD, Rossi R, Onate E (2009) Fluid-structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80: 1261–1294zbMATHCrossRefGoogle Scholar
  83. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi: 10.1007/s00466-009-0426-z zbMATHCrossRefGoogle Scholar
  84. Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46: 185–197MathSciNetzbMATHCrossRefGoogle Scholar
  85. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi: 10.1002/fld.2221 zbMATHCrossRefGoogle Scholar
  86. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416zbMATHCrossRefGoogle Scholar
  87. Ryzhakov PB, Rossi R, Idelsohn SR, Onate E (2010) A1 monolithic Lagrangian approach for fluid–structure interaction problems. Comput Mech 46: 883–899MathSciNetzbMATHCrossRefGoogle Scholar
  88. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi: 10.1002/fld.2400 zbMATHCrossRefGoogle Scholar
  89. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253zbMATHCrossRefGoogle Scholar
  90. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi: 10.1002/fld.2348 zbMATHCrossRefGoogle Scholar
  91. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi: 10.1002/fld.2359 zbMATHCrossRefGoogle Scholar
  92. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi: 10.1007/s00466-011-0571-z MathSciNetzbMATHCrossRefGoogle Scholar
  93. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344. doi: 10.1007/s00466-011-0589-2 zbMATHCrossRefGoogle Scholar
  94. Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364. doi: 10.1007/s00466-011-0590-9 zbMATHCrossRefGoogle Scholar
  95. Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79: 010907. doi: 10.1115/1.4005070 CrossRefGoogle Scholar
  96. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79: 010903. doi: 10.1115/1.4005073 CrossRefGoogle Scholar
  97. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657. doi: 10.1007/s00466-011-0614-5 zbMATHCrossRefGoogle Scholar
  98. Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48: 319–332. doi: 10.1007/s00466-011-0600-y MathSciNetzbMATHCrossRefGoogle Scholar
  99. Onate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48: 307–318. doi: 10.1007/s00466-011-0617-2 MathSciNetzbMATHCrossRefGoogle Scholar
  100. Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48: 293–306. doi: 10.1007/s00466-011-0618-1 MathSciNetzbMATHCrossRefGoogle Scholar
  101. Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48: 269–276. doi: 10.1007/s00466-011-0620-7 MathSciNetzbMATHCrossRefGoogle Scholar
  102. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19: 25–169. doi: 10.1007/s11831-012-9070-4 Google Scholar
  103. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci. doi: 10.1142/S0218202512300013
  104. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech. doi: 10.1007/s00466-012-0759-x
  105. Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech. doi: 10.1007/s00466-012-0758-y
  106. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetzbMATHCrossRefGoogle Scholar
  107. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetzbMATHCrossRefGoogle Scholar
  108. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II~Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetzbMATHCrossRefGoogle Scholar
  109. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi: 10.1002/fld.505 MathSciNetzbMATHCrossRefGoogle Scholar
  110. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MathSciNetzbMATHCrossRefGoogle Scholar
  111. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi: 10.1016/0045-7825(92)90141-6 zbMATHCrossRefGoogle Scholar
  112. Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia , SpainGoogle Scholar
  113. Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction—theory, numerics and applications. Kassel University Press, pp 231–252, ISBN 978-3-89958-666-4Google Scholar
  114. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401zbMATHCrossRefGoogle Scholar
  115. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799CrossRefGoogle Scholar
  116. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201MathSciNetzbMATHCrossRefGoogle Scholar
  117. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414MathSciNetzbMATHCrossRefGoogle Scholar
  118. Rhee K, Han MH, Cha SH, Khang G (2001) The changes of flow characteristics caused by a stent in fusiform aneurysm models. In: Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd annual international conference of the IEEE, vol 1, pp 86–88. doi: 10.1109/IEMBS.2001.1018852
  119. Jou L-D, Mawad ME (2011) Hemodynamic effect of neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med Eng Phys 33: 573–580. doi: 10.1016/j.medengphy.2010.12.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Kathleen Schjodt
    • 2
  • Anthony Puntel
    • 2
  • Nikolay Kostov
    • 2
  • Tayfun E. Tezduyar
    • 2
  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations