Advertisement

Computational Mechanics

, Volume 50, Issue 6, pp 743–760 | Cite as

Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust

  • Kenji Takizawa
  • Bradley Henicke
  • Anthony Puntel
  • Nikolay Kostov
  • Tayfun E. Tezduyar
Original Paper

Abstract

We present the special space–time computational techniques we have introduced recently for computational aerodynamics modeling of flapping wings of an actual locust. These techniques have been designed to be used with the deforming-spatial-domain/stabilized space–time (DSD/SST) formulation, which is the core computational technique. The DSD/SST formulation was developed for flow problems with moving interfaces and was elevated to newer versions over the years, including the space–time version of the residual-based variational multiscale (VMS) method, which is called “DSD/SST-VMST” and used in the computations reported here. The special space–time techniques are based on using, in the space–time flow computations, NURBS basis functions for the temporal representation of the motion and deformation of the locust wings. The motion and deformation data is extracted from the high-speed, multi-camera video recordings of a locust in a wind tunnel. In addition, temporal NURBS basis functions are used in representation of the motion and deformation of the volume meshes computed and also in remeshing. These ingredients provide an accurate and efficient way of dealing with the wind tunnel data and the mesh. The computations demonstrate the effectiveness of the core and special space–time techniques in modeling the aerodynamics of flapping wings, with the wing motion and deformation coming from an actual locust.

Keywords

Space–time techniques NURBS Mesh moving techniques Remeshing Computational aerodynamics Flapping wings Locust 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces: the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces: the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi: 10.1002/fld.505 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi: 10.1002/fld.1430 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi: 10.1007/s00466-011-0571-z MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Takizawa K and Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci. doi: 10.1142/S0218202512300013
  8. 8.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  10. 10.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–Structure Interaction, vol 53 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, pp 82–100Google Scholar
  13. 13.
    Sawada T, Hisada T (2007) Isogeometric fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking finite element method. Comput Fluids 36: 136–146zbMATHCrossRefGoogle Scholar
  14. 14.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dettmer WG, Peric D (2008) On the oupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90zbMATHCrossRefGoogle Scholar
  16. 16.
    Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43: 91–101zbMATHCrossRefGoogle Scholar
  17. 17.
    Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid–structure interaction simulations using an implicit partitioned approach. Comput Mech 43: 103–113zbMATHCrossRefGoogle Scholar
  18. 18.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46: 185–197MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  23. 23.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi: 10.1002/fld.2400 zbMATHCrossRefGoogle Scholar
  24. 24.
    Bazilevs Y, Hsu M-C, Kiendl J, uchner RW, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253zbMATHCrossRefGoogle Scholar
  25. 25.
    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48: 269–276. doi: 10.1007/s00466-011-0620-7 MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi: 10.1016/0045-7825(92)90141-6 zbMATHCrossRefGoogle Scholar
  29. 29.
    Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15: 1073–1118. doi: 10.1002/fld.1650150911 CrossRefGoogle Scholar
  30. 30.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi: 10.1016/0045-7825(94)90029-9 MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi: 10.1007/BF00350249 zbMATHCrossRefGoogle Scholar
  32. 32.
    Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274. doi: 10.1016/S0045-7825(98)00299-0 zbMATHCrossRefGoogle Scholar
  33. 33.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi: 10.1007/BF02897870 zbMATHCrossRefGoogle Scholar
  34. 34.
    Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi: 10.1016/S0045-7825(00)00388-1 zbMATHCrossRefGoogle Scholar
  35. 35.
    Tezduyar TE, Behr M, Mittal S, and Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space–time formulations, iterative strategies and massively parallel implementations. In New methods in transient analysis, 246(143), ASME, New York, pp 7–24Google Scholar
  36. 36.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi: 10.1109/2.237441 CrossRefGoogle Scholar
  37. 37.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94. doi: 10.1016/0045-7825(94)00077-8 zbMATHCrossRefGoogle Scholar
  38. 38.
    Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134: 351–373. doi: 10.1016/0045-7825(95)00988-4 MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C
  40. 40.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi: 10.1115/11530635 zbMATHCrossRefGoogle Scholar
  41. 41.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi: 10.1016/j.cma.2003.12.046 zbMATHCrossRefGoogle Scholar
  42. 42.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi: 10.1016/0045-7825(94)00082-4 zbMATHCrossRefGoogle Scholar
  43. 43.
    Guler I, Behr M, Tezduyar T (1999) Parallel finite element computation of free-surface flows. Comput Mech 23: 117–123. doi: 10.1007/s004660050391 CrossRefGoogle Scholar
  44. 44.
    Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36: 2–11. doi: 10.1016/j.compfluid.2005.07.008 zbMATHCrossRefGoogle Scholar
  45. 45.
    Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi: 10.1002/fld.1650211003 MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 705–716. doi: 10.1016/S0045-7825(01)00310-3 zbMATHCrossRefGoogle Scholar
  47. 47.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344. doi: 10.1007/s00466-011-0589-2 zbMATHCrossRefGoogle Scholar
  48. 48.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657. doi: 10.1007/s00466-011-0614-5 zbMATHCrossRefGoogle Scholar
  49. 49.
    Aliabadi SK, Tezduyar TE (1993) Space–time finite element computation of compressible flows involving moving boundaries and interfaces. Comput Methods Appl Mech Eng 107: 209–223. doi: 10.1016/0045-7825(93)90176-X zbMATHCrossRefGoogle Scholar
  50. 50.
    Kashiyama K, Saitoh K, Behr M, Tezduyar TE (1997) Parallel finite element methods for large-scale computation of storm surges and tidal flows. Int J Numer Methods Fluids 24: 1371–1389. doi: 10.1002/(SICI)1097-0363(199706)24:12<1371::AID-FLD565>3.0.CO;2-7 zbMATHCrossRefGoogle Scholar
  51. 51.
    Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48: 293–306. doi: 10.1007/s00466-011-0618-1 MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Johnson AA, Tezduyar TE (1997) simulation of fluid-particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321. doi: 10.1016/S0045-7825(96)01223-6 Google Scholar
  53. 53.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi: 10.1007/s004660050393 zbMATHCrossRefGoogle Scholar
  54. 54.
    Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190: 3201–3221. doi: 10.1016/S0045-7825(00)00389-3 zbMATHCrossRefGoogle Scholar
  55. 55.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—Fluid-structure interactions. Int J Numer Methods Fluids 21: 933–953. doi: 10.1002/fld.1650211011 zbMATHCrossRefGoogle Scholar
  56. 56.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi: 10.1016/S0045-7825(00)00204-8 zbMATHCrossRefGoogle Scholar
  57. 57.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D Computation. Comput Methods Appl Mech Eng 190: 373–386. doi: 10.1016/S0045-7825(00)00208-5 zbMATHCrossRefGoogle Scholar
  58. 58.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726. doi: 10.1016/S0045-7825(01)00311-5 zbMATHCrossRefGoogle Scholar
  59. 59.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi: 10.1016/j.cma.2004.09.014 MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi: 10.1016/j.cma.2005.08.023 MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi: 10.1016/j.cma.2005.05.050 MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi: 10.1007/s00466-006-0065-6 zbMATHCrossRefGoogle Scholar
  63. 63.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi: 10.1016/j.compfluid.2005.02.011 MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi: 10.1002/fld.1443 MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi: 10.1016/j.compfluid.2005.07.014 zbMATHCrossRefGoogle Scholar
  66. 66.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm: dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi: 10.1002/fld.1497 MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi: 10.1007/s00466-008-0276-0 MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi: 10.1007/s00466-008-0261-7 zbMATHCrossRefGoogle Scholar
  69. 69.
    Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi: 10.1007/s00466-008-0260-8 zbMATHCrossRefGoogle Scholar
  70. 70.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi: 10.1007/s00466-008-0299-6 MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi: 10.1007/s00466-008-0325-8 zbMATHCrossRefGoogle Scholar
  72. 72.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi: 10.1016/j.cma.2008.08.020 MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi: 10.1115/1.3059576 CrossRefGoogle Scholar
  75. 75.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi: 10.1002/cnm.1241 zbMATHCrossRefGoogle Scholar
  76. 76.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi: 10.1002/cnm.1289 MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi: 10.1007/s00466-009-0426-z zbMATHCrossRefGoogle Scholar
  80. 80.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi: 10.1007/s00466-009-0439-7 zbMATHCrossRefGoogle Scholar
  81. 81.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi: 10.1002/fld.2221 zbMATHCrossRefGoogle Scholar
  82. 82.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi: 10.1002/fld.2348 zbMATHCrossRefGoogle Scholar
  83. 83.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi: 10.1002/fld.2360 zbMATHCrossRefGoogle Scholar
  84. 84.
    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi: 10.1002/fld.2359 zbMATHCrossRefGoogle Scholar
  85. 85.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi: 10.1002/fld.2415 MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi: 10.1002/fld.2448 zbMATHCrossRefGoogle Scholar
  87. 87.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27: 1665–1710. doi: 10.1002/cnm.1433 MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space–timeFSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364. doi: 10.1007/s00466-011-0590-9 zbMATHCrossRefGoogle Scholar
  89. 89.
    Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79: 010907. doi: 10.1115/1.4005070 CrossRefGoogle Scholar
  90. 90.
    Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79: 010908. doi: 10.1115/1.4005071 CrossRefGoogle Scholar
  91. 91.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384. doi: 10.1007/s00466-011-0619-0 zbMATHCrossRefGoogle Scholar
  92. 92.
    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19: 125–169. doi: 10.1007/s11831-012-9070-4 MathSciNetCrossRefGoogle Scholar
  93. 93.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225. doi: 10.1007/s11831-012-9071-3 MathSciNetCrossRefGoogle Scholar
  94. 94.
    Wu TY (2011) Fish swimming and bird/insect flight. Ann Rev Fluid Mech 43: 25–58CrossRefGoogle Scholar
  95. 95.
    Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401zbMATHCrossRefGoogle Scholar
  96. 96.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799CrossRefGoogle Scholar
  97. 97.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent taylor–couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79: 010903. doi: 10.1115/1.4005073 CrossRefGoogle Scholar
  102. 102.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20: 359–392MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kenji Takizawa
    • 1
  • Bradley Henicke
    • 2
  • Anthony Puntel
    • 2
  • Nikolay Kostov
    • 2
  • Tayfun E. Tezduyar
    • 2
  1. 1.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityShinjuku-ku, TokyoJapan
  2. 2.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations