Advertisement

Computational Mechanics

, Volume 51, Issue 4, pp 455–463 | Cite as

Oblique mid ocean ridge subduction modelling with the parallel fast multipole boundary element method

  • L. Quevedo
  • B. Hansra
  • G. Morra
  • N. Butterworth
  • R. D. Müller
Original Paper

Abstract

Geodynamic models describe the thermo-mechanical evolution of rheologically intricate structures spanning different length scales, yet many of their most relevant dynamic features can be studied in terms of low Reynolds number multiphase creep flow of isoviscous and isopycnic structures. We use the BEM-Earth code to study the interaction of the lithosphere and mantle within the solid earth system in this approximation. BEM-Earth overcomes the limitations of traditional FD/FEM for this problem by considering only the dynamics of Boundary Integral Elements at fluid interfaces, and employing a parallel multipole solver accelerated with a hashed octtree. As an application example, we self-consistently model the processes controlling the subduction of an oblique mid-ocean ridge in a global 3D spherical setting in a variety of cases, and find a critical angle characterising the transition between an extensional strain regime related to tectonic plate necking and a compressive regime related to Earth curvature effects.

Keywords

Boundary integral element Mid ocean ridges Subduction mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews ER, Billen MI (2009) Rheologic controls on the dynamics of slab detachment. Tectonophysics 464(1–4): 60–69CrossRefGoogle Scholar
  2. 2.
    Barnes J, Hut P (1986) A hierarchical o(n log n) force-calculation algorithm. Nature 324(4): 446–449CrossRefGoogle Scholar
  3. 3.
    Bellahsen N, Faccenna C, Funiciello F (2005) Dynamics of subduction and plate motion in laboratory experiments: insights into the “plate tectonics” behavior of the earth. J Geophys Res 110(B1): 1–15CrossRefGoogle Scholar
  4. 4.
    Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3): 1027–1028CrossRefGoogle Scholar
  5. 5.
    Burkett ER, Billen MI (2009) Dynamics and implications of slab detachment due to ridge-trench collision. J Geophys Res 114(B12)Google Scholar
  6. 6.
    Burkett ER, Billen MI (2010) Three-dimensionality of slab detachment due to ridge-trench collision: laterally simultaneous boudinage versus tear propagation. Geochem Geophys Geosyst 11(11)Google Scholar
  7. 7.
    Cheng H, Greengard L, Rokhlin V (1999) A fast adaptive multipole algorithm in three dimensions. J Comput Phys 155(2): 468–498MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cloos M (1993) Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol Soc Am Bull 105(6): 715–737CrossRefGoogle Scholar
  9. 9.
    Conrad CP, Lithgow-Bertelloni C (2002) How mantle slabs drive plate tectonics. Science 298(5591): 207–209CrossRefGoogle Scholar
  10. 10.
    Conrad CP, Lithgow-Bertelloni C (2004) The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the cenozoic. J Geophys Res 109(B10)Google Scholar
  11. 11.
    Gerya T (2011) Future directions in subduction modeling. J Geodyn 52(5): 344–378CrossRefGoogle Scholar
  12. 12.
    Gerya TV, Yuen DA, Maresch WV (2004) Thermomechanical modelling of slab detachment. Earth Planet Sci Lett 226(1–2): 101–116CrossRefGoogle Scholar
  13. 13.
    Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2): 325–348MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Groome W, Thorkelson D (2009) The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics 464(1-4): 70–83CrossRefGoogle Scholar
  15. 15.
    Hager BH, O’Connell RJ (1981) A simple global model of plate dynamics and mantle convection. J Geophys Res 86(B6): 4843–4867CrossRefGoogle Scholar
  16. 16.
    Ingber M, Mondy L (1993) Direct second kind boundary integral formulation for stokes flow problems. Comput Mech 11(1): 11–27MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Morra G, Chatelain P, Tackley P, Koumoutsakos P (2007) Large scale three-dimensional boundary element simulation of subduction. In: Shi Y, van Albada GD, Dongarra J, Sloot PM (eds) Computational Science (ICCS 2007) 7th international conference, Beijing, China, May 27–30, 2007, Proceedings, Part I. Lecture notes in computer science, vol 4489, Springer, Heidelberg, pp 1122–1129Google Scholar
  18. 18.
    Morra G, Chatelain P, Tackley P, Koumoutsakos P (2009) Earth curvature effects on subduction morphology: modeling subduction in a spherical setting. Acta Geotech 4(2): 95–105CrossRefGoogle Scholar
  19. 19.
    Morra G, Quevedo L, Müller RD (2012) Spherical dynamic models of top-down tectonics. Geochem Geophys Geosyst 13Google Scholar
  20. 20.
    Morra G, Regenauer-Lieb K, Giardini D (2006) Curvature of oceanic arcs. Geology 34(10): 877–880CrossRefGoogle Scholar
  21. 21.
    Morra G, Yuen DA, Boschi L, Chatelain P, Koumoutsakos P, Tackley PJ (2010) The fate of the slabs interacting with a density/viscosity hill in the mid-mantle. Phys Earth Planet Inter 180(3–4): 271–282CrossRefGoogle Scholar
  22. 22.
    OzBench M, Regenauer-Lieb K, Stegman DR, Morra G, Farrington R, Hale A, May DA, Freeman J, Bourgouin L, Mühlhaus H, Moresi L (2008) A model comparison study of large-scale mantle-lithosphere dynamics driven by subduction. Phys Earth Planet Inter 171(1–4): 224–234CrossRefGoogle Scholar
  23. 23.
    Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow, vol 7. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. 24.
    Quevedo L, Morra G, Müller RD (2010) Parallel fast multipole boundary element method for crustal dynamics. IOP Conf Ser Mater Sci Eng 10(1): 012Google Scholar
  25. 25.
    Ribe N (2010) Bending mechanics and mode selection in free subduction: a thin-sheet analysis. Geophys J Int 180(2): 559–576CrossRefGoogle Scholar
  26. 26.
    Salvadori A (2001) Analytical integrations of hypersingular kernel in 3d bem problems. Comput Methods Appl Mech Eng 190(31): 3957–3975MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Shen L, Liu Y (2007) An adaptive fast multipole boundary element method for three-dimensional potential problems. Comput Mech 39(6): 681–691MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Stegman DR, Freeman J, Schellart WP, Moresi L, May D (2006) Influence of trench width on subduction hinge retreat rates in 3-d models of slab rollback. Geochem Geophys Geosyst 7(3)Google Scholar
  29. 29.
    Tausch J (2003) Sparse BEM for potential theory and stokes flow using variable order wavelets. Comput Mech 32(4): 312–318MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Tornberg AK, Greengard L (2008) A fast multipole method for the three-dimensional stokes equations. J Comput Phys 227(3): 1613–1619MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Turcotte DL, Schubert G (2002) Geodynamics, vol 2. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. 32.
    Warren MS, Salmon JK (1993) A parallel hashed oct-tree n-body algorithm. In: Borchers B, Crawford D (eds) Supercomputing 93: Proceedings of the 1993 ACM/IEEE conference on supercomputing. ACM, New York, pp 12–21Google Scholar
  33. 33.
    Whittaker JM, Müller RD, Leitchenkov G, Stagg H, Sdrolias M, Gaina C, Goncharov A (2007) Major australian-antarctic plate reorganization at hawaiian-emperor bend time. Science 318(5847): 83–86CrossRefGoogle Scholar
  34. 34.
    Zhu G, Mammoli A, Power H (2006) A 3-d indirect boundary element method for bounded creeping flow of drops. Eng Anal Bound Elem 30(10): 856–868zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • L. Quevedo
    • 1
  • B. Hansra
    • 1
  • G. Morra
    • 1
    • 2
  • N. Butterworth
    • 1
  • R. D. Müller
    • 1
  1. 1.EarthByte Group, School of GeosciencesUniversity of SydneySydneyAustralia
  2. 2.School of Earth and Environmental SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations