Computational Mechanics

, Volume 51, Issue 5, pp 731–741 | Cite as

Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations

  • Yaidel Reyes LópezEmail author
  • Dirk Roose
  • Carlos Recarey Morfa
Original Paper


In this paper, we present a dynamic refinement algorithm for the smoothed particle Hydrodynamics (SPH) method. An SPH particle is refined by replacing it with smaller daughter particles, which positions are calculated by using a square pattern centered at the position of the refined particle. We determine both the optimal separation and the smoothing distance of the new particles such that the error produced by the refinement in the gradient of the kernel is small and possible numerical instabilities are reduced. We implemented the dynamic refinement procedure into two different models: one for free surface flows, and one for post-failure flow of non-cohesive soil. The results obtained for the test problems indicate that using the dynamic refinement procedure provides a good trade-off between the accuracy and the cost of the simulations.


SPH Dynamic refinement Adaptivity Free surface flow Non-cohesive soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional sph simulations of wedge water entries. J Comput Phys 213(2): 803–822. doi: 10.1016/ MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bate M, Bonnell I, Price N (1995) Modelling accretion in protobinary systems. Mon Not Roy Astron Soc 277: 362–376Google Scholar
  3. 3.
    Kitsionas S, Whitworth A (2002) Smoothed particle hydrodynamics with particle splitting, applied to self-gravitating collapse. Mon Not Roy Astron Soc 330(1): 129–136CrossRefGoogle Scholar
  4. 4.
    Kitsionas S, Whitworth AP (2007) High-resolution simulations of clump-clump collisions using sph with particle splitting. Mon Not Roy Astron Soc 378(2): 507–524. doi: 10.1111/j.1365.2966.2007.11707.x CrossRefGoogle Scholar
  5. 5.
    Meglicki Z, Wickramasinghe D, Bicknell G (1993) 3d structure of truncated accretion disks in close binaries. Mon Not Roy Astron Soc 264(3): 691–704Google Scholar
  6. 6.
    Monaghan J, Varnas S (1988) The dynamics of interstellar cloud complexes. Mon Not Roy Astron Soc 231(2): 515–534Google Scholar
  7. 7.
    Lastiwka M, Quinlan N, Basa M (2005) Adaptive particle distribution for smoothed particle hydrodynamics. Int J Num Methods Fluids 47(10–11):1403–1409 doi: 10.1002/fld.891. (8th ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford, 2004)Google Scholar
  8. 8.
    Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. Int J Num Methods Eng 72(3): 295–324. doi: 10.1002/nme.2010 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Feldman J (2006) Dynamic refinement and boundary contact forces in smoothed particle hydrodynamics with applications in fluid flow problems. Ph.D. thesis, University of Wales, School of Engineering, SwanseaGoogle Scholar
  10. 10.
    Liu G, Liu M (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing, SingaporezbMATHCrossRefGoogle Scholar
  11. 11.
    Liu M, Liu G (2010) Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Method Eng 17(1): 25–76. doi: 10.1007/s11831-010-9040-7 CrossRefGoogle Scholar
  12. 12.
    Monaghan J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8): 1703–1759MathSciNetCrossRefGoogle Scholar
  13. 13.
    Reyes~López Y, Roose D (2011) Particle refinement for fluid flow simulations with sph. In: 19th international conference on computer methods in mechanics. Short papers, p 427–428.
  14. 14.
    Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190: 225–239zbMATHCrossRefGoogle Scholar
  15. 15.
    Swegle J, Hicks D, Attaway S (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116: 123–134. doi: 10.1006/jcph.1995.1010 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Monaghan J (1994) Simulating free surface flows with sph. J Comput Phys 110(2): 399–406. doi: 10.1006/jcph.1994.1034 zbMATHCrossRefGoogle Scholar
  17. 17.
    Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Num Anal Methods Geomech 32(12): 1537–1570. doi: 10.1002/nag.688 CrossRefGoogle Scholar
  18. 18.
    Morris J, Fox P, Zhu Y (1997) Modeling low reynolds number incompressible flows using sph. J Comput Phys 136(1): 214–226. doi: 10.1006/jcph.1997.5776 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yaidel Reyes López
    • 1
    • 2
    Email author
  • Dirk Roose
    • 1
  • Carlos Recarey Morfa
    • 2
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Centro de Investigaciones de Métodos Computacionales y Numéricos en la Ingeniería (CIMCNI)Universidad Central Marta Abreu de Las Villas (UCLV)Santa ClaraCuba

Personalised recommendations