Computational Mechanics

, Volume 50, Issue 2, pp 185–194 | Cite as

Ab initio study of phase stability in doped TiO2

  • Dorian A. H. HanaorEmail author
  • Mohammed H. N. Assadi
  • Sean Li
  • Aibing Yu
  • Charles C. Sorrell
Original Paper


Ab initio density functional theory calculations of the relative stability of the anatase and rutile polymorphs of TiO2 were carried out using all-electron atomic orbitals methods with local density approximation. The rutile phase exhibited a moderate margin of stability of ~ 3 meV relative to the anatase phase in pristine material. From computational analysis of the formation energies of Si, Al, Fe and F dopants of various charge states across different Fermi level energies in anatase and in rutile, it was found that the cationic dopants are most stable in Ti substitutional lattice positions while formation energy is minimised for F doping in interstitial positions. All dopants were found to considerably stabilise anatase relative to the rutile phase, suggesting the anatase to rutile phase transformation is inhibited in such systems with the dopants ranked F > Si > Fe > Al in order of anatase stabilisation strength. Al and Fe dopants were found to act as shallow acceptors with charge compensation achieved through the formation of mobile carriers rather than the formation of anion vacancies.


Solar energy Titanium dioxide Photocatalysis Density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujihara K, Ohno T, Matsumura M (1998) Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. J Chem Soc Faraday Trans 94: 3705–3709CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38CrossRefGoogle Scholar
  3. 3.
    Ni M, Leung M, Leung D, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11: 401–425CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1: 1–21CrossRefGoogle Scholar
  5. 5.
    Balasubramanian G, Dionysiou DD, Suidan MT, Baudin I, Lan JM (2004) Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Appl Catal B Environ 47: 73–84CrossRefGoogle Scholar
  6. 6.
    Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B Environ 17: 25–36CrossRefGoogle Scholar
  7. 7.
    Hur J, Koh Y (2002) Bactericidal activity and water purification of immobilized TiO 2 photocatalyst in bean sprout cultivation. Biotechnol Lett 24: 23–25CrossRefGoogle Scholar
  8. 8.
    Mills A, Davies RH, Worsley D (1993) Water purification by semiconductor photocatalysis. Chem Soc Rev 22: 417–434CrossRefGoogle Scholar
  9. 9.
    Carneiro JO, Teixeira V, Portinha A, Magalhaes A, Countinho P, Tavares CJ (2007) Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications. Mater Sci Eng B 138: 144–150CrossRefGoogle Scholar
  10. 10.
    Mills A, Hodgen S, Lee SK (2004) Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes. Res Chem Intermed 31: 295–308CrossRefGoogle Scholar
  11. 11.
    Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15: 1689–1695CrossRefGoogle Scholar
  12. 12.
    Paz Y, Heller A (1997) Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: the deleterious effect of sodium contamination and its prevention. J Mater Res 12: 2759CrossRefGoogle Scholar
  13. 13.
    Ditta I, Steele A, Liptrot C, Tobin J, Tyler H, Yates H, Sheel D, Foster H (2008) Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol 79: 127–133CrossRefGoogle Scholar
  14. 14.
    Hajkova P, Spatenka P, Horsky J, Horska I, Kolouch A (2007) Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Process Polym 4: S397–S401CrossRefGoogle Scholar
  15. 15.
    Mitoraj D, Janczyk A, Strus M, Kisch H, Stochel G, Heczko PB, Macyk W (2007) Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem Photobiol Sci 6: 642–648CrossRefGoogle Scholar
  16. 16.
    Barzykin AV, Tachiya M (2002) Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: random flight model. J Phys Chem B 106: 4356–4363CrossRefGoogle Scholar
  17. 17.
    Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44: 6841–6851CrossRefGoogle Scholar
  18. 18.
    Huang SY, Schlichthorl G, Nozik AJ, Gratzel M, Frank AJ (1997) Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 101: 2576–2582CrossRefGoogle Scholar
  19. 19.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 737–739CrossRefGoogle Scholar
  20. 20.
    Anpo M, Che M (1999) Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis. Adv Catalysis 44: 119–257CrossRefGoogle Scholar
  21. 21.
    Miyashita K, Kuroda S, Tajima S, Takehira K, Tobita S, Kubota H (2003) Photoluminescence study of electron–hole recombination dynamics in the vacuum-deposited SiO2/TiO2 multilayer film with photo-catalytic activity. Chem Phys Lett 369: 225–231CrossRefGoogle Scholar
  22. 22.
    Anpo M (1997) Photocatalysis on titanium oxide catalysts: approaches in achieving highly efficient reactions and realizing the use of visible light. Catal Surv Japan 1: 169–179CrossRefGoogle Scholar
  23. 23.
    Lee MC, Choi W (2002) Solid phase photocatalytic reaction on the soot/TiO2 interface: the role of migrating OH radicals. J Phys Chem B 106: 11818–11822CrossRefGoogle Scholar
  24. 24.
    Lee SK, McIntyre S, Mills A (2004) Visible illustration of the direct, lateral and remote photo catalytic destruction of soot by titania. J Photochem Photobiol A 162: 203–206CrossRefGoogle Scholar
  25. 25.
    Daude N, Gout C, Jouanin C (1977) Electronic band structure of titanium dioxide. Phys Rev B 15: 3229–3235CrossRefGoogle Scholar
  26. 26.
    Madhusudan Reddy K, Manorama SV, Ramachandra Reddy A (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78: 239–245CrossRefGoogle Scholar
  27. 27.
    Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys Part 2 Lett 40: 561–563CrossRefGoogle Scholar
  28. 28.
    Sclafani A, Herrmann JM (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania. J Phys Chem 100: 13655–13661CrossRefGoogle Scholar
  29. 29.
    Hanaor D, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46: 855–874CrossRefGoogle Scholar
  30. 30.
    Gopal M, Moberly Chan WJ, De Jonghe LC (1997) Room temperature synthesis of crystalline metal oxides. J Mater Sci 32: 6001–6008CrossRefGoogle Scholar
  31. 31.
    Bakardjieva S, Subrt J, Stengl V, Dianez MJ, Sayagues MJ (2005) Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B: Environ 58: 193–202CrossRefGoogle Scholar
  32. 32.
    Hanaor D, Triani G, Sorrell CC (2011) Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films. Surf Coat Technol 205: 3658–3664CrossRefGoogle Scholar
  33. 33.
    Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107: 4545–4549CrossRefGoogle Scholar
  34. 34.
    Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26: 1167–1170CrossRefGoogle Scholar
  35. 35.
    Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphtalene. Appl Catal A 244: 383–391CrossRefGoogle Scholar
  36. 36.
    Testino A, Bellobono IR, Buscaglia V, Canevali C, D’Arienzo M, Polizzi S, Scotti R, Morazzoni F (2007) Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology: a systematic approach. J Am Chem Soc 129: 3564–3575CrossRefGoogle Scholar
  37. 37.
    Kominami H, Ishii Y, Kohno M, Konishi S, Kera Y, Ohtani B (2003) Nanocrystalline brookite-type titanium (IV) oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalytic activities. Catal Lett 91: 41–47CrossRefGoogle Scholar
  38. 38.
    Ohtani B, Handa J, Nishimoto S, Kagiya T (1985) Highly active semiconductor photocatalyst: extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and/or silver sulfate solution. Chem Phys Lett 120: 292–294CrossRefGoogle Scholar
  39. 39.
    Hu Y, Tsai HL, Huang CL (2003) Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. J Eur Ceram Soc 23: 691–696CrossRefGoogle Scholar
  40. 40.
    Wang H, Lewis JP (2006) Second-generation photocatalytic materials: anion-doped TiO2. J Phys Condens Matter 18: 421–434CrossRefGoogle Scholar
  41. 41.
    Hanaor D, Michelazzi M, Chenu J, Leonelli C, Sorrell CC (2011) The effects of firing conditions on the properties of electrophoretically deposited titanium dioxide films on graphite substrates. J Eur Ceram Soc 31: 2877–2885CrossRefGoogle Scholar
  42. 42.
    Liu G, Wang L, Yang HG, Cheng HM, Lu GQM (2009) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20: 831–843CrossRefGoogle Scholar
  43. 43.
    Kudo A, Miseki Y (2008) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38: 253–278CrossRefGoogle Scholar
  44. 44.
    Burns A, Li W, Baker C, Shah SI (2002) Sol–gel synthesis and characterization of neodymium-ion doped nanostructured titania thin films. Mater Res Soc Symp Proc 703: 5.2.1–5.2.6Google Scholar
  45. 45.
    Batzill M, Morales EH, Diebold U (2006) Influence of Nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96: 26103CrossRefGoogle Scholar
  46. 46.
    Xin B, Ren Z, Wang P, Jing L, Fu H, Liu J (2007) Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+TiO2 photocatalysts. Appl Surf Sci 253: 4390–4395CrossRefGoogle Scholar
  47. 47.
    Sun B, Vorontsov AV, Smirniotis PG (2003) Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 19: 3151–3156CrossRefGoogle Scholar
  48. 48.
    Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madrass G (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20: 2900–2907CrossRefGoogle Scholar
  49. 49.
    Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts?. J Phys Chem B 110: 24287–24293CrossRefGoogle Scholar
  50. 50.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81: 454CrossRefGoogle Scholar
  51. 51.
    Baiju KV, Sibu CP, Rajesh K, Pillai PK, Mukundan P, Warrier KGK, Wunderlich W (2005) An aqueous sol–gel route to synthesize nanosized lanthana-doped titania having an increased anatase phase stability for photocatalytic application. Mater Chem Phys 90: 123–127CrossRefGoogle Scholar
  52. 52.
    Kim D, Kim T, Hong K (1999) Low-firing of CuO-doped anatase. Mater Res Bull 34: 771–781CrossRefGoogle Scholar
  53. 53.
    Kim J, Song KC, Foncillas S, Pratsinis S (2001) Dopants for synthesis of stable bimodally porous titanis. J Eur Ceram Soc 21: 2863–2872CrossRefGoogle Scholar
  54. 54.
    Reidy DJ, Holmes JD, Nagle C, Morris MA (2005) A highly thermally stable anatase phase prepared by doping with zirconia and silica coupled to a mesoporous type synthesis technique. J Mater Chem 15(34): 3494–3500CrossRefGoogle Scholar
  55. 55.
    Sharma SD, Singh D, Saini K, Kant C, Sharma V, Jain SC, Sharma CP (2006) Sol–gel derived super-hydrophilic nickel doped TiO2 film as an active photocatalyst. Appl Catal A 314(1): 40–46CrossRefGoogle Scholar
  56. 56.
    Mackenzie KJD (1975) Calcination of titania V: kinetics and mechanism of the anatase–rutile transformation in the presence of additives. Transac J Br Ceram Soc 74: 77–84Google Scholar
  57. 57.
    Shannon RD, Pask JA (1965) Kinetics of the anatase–rutile transformation. J Am Ceram Soc 48: 391–398CrossRefGoogle Scholar
  58. 58.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A): 1133–1138MathSciNetCrossRefGoogle Scholar
  59. 59.
    Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111: 10439–10452CrossRefGoogle Scholar
  60. 60.
    Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University Press, New York, USAGoogle Scholar
  61. 61.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92: 508–517CrossRefGoogle Scholar
  62. 62.
    Delley B (2000) From molecules to solids with the DMol(3) approach. J Chem Phys 113: 7756–7764CrossRefGoogle Scholar
  63. 63.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron gas correlation energy. Phys Rev B 45: 13244–13249CrossRefGoogle Scholar
  64. 64.
    Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98: 5648–5652CrossRefGoogle Scholar
  65. 65.
    Bloch F (1929) Über die quantenmechanik der elektronen in kristallgittern. Z für Physik A Hadrons Nuclei 52: 555–600Google Scholar
  66. 66.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: 5188–5192MathSciNetCrossRefGoogle Scholar
  67. 67.
    Zhu Z, Shima N, Tsukada M (1989) Electronic states of Si (100) reconstructed surfaces. Phys Rev B 40: 11868CrossRefGoogle Scholar
  68. 68.
    Shanno D, Kettler P (1970) Optimal conditioning of quasi-Newton methods. Math Comput 24: 657–664MathSciNetCrossRefGoogle Scholar
  69. 69.
    Hine NDM, Robinson M, Haynes PD, Skylaris CK, Payne MC, Mostofi AA (2011) Accurate ionic forces and geometry optimization in linear-scaling density-functional theory with local orbitals. Phys Rev B 83: 195102CrossRefGoogle Scholar
  70. 70.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70: 560–571CrossRefGoogle Scholar
  71. 71.
    Curtiss LA, Carpenter JE, Raghavachari K, Pople JA (1992) Validity of additivity approxiamations in Gaussian theory. J Chem Phys 96: 9030–9034CrossRefGoogle Scholar
  72. 72.
    Cromer DT, Herrington K (1955) The structures of anatase and rutile. J Am Chem Soc 77: 4708–4709CrossRefGoogle Scholar
  73. 73.
    Na-Phattalung S, Smith MF, Kim K, Du MH, Wei SH, Zhang SB, Limpijumnong S (2006) First-principles study of native defects in anatase TiO2. Phys Rev B 73(12): 125205CrossRefGoogle Scholar
  74. 74.
    Smith SJ, Stevens R, Liu S, Li G, Navrotsky A, Boerio-Goates J, Woodfield BF (2009) Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Mineral 94: 236CrossRefGoogle Scholar
  75. 75.
    Zhang H, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8: 2073–2076CrossRefGoogle Scholar
  76. 76.
    Vande Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95: 3851–3879CrossRefGoogle Scholar
  77. 77.
    Janotti A, Vande Walle CG (2006) Hydrogen multicentre bonds. Nat Mater 6: 44–47CrossRefGoogle Scholar
  78. 78.
    Muscat J, Swamy V, Harrison NM (2002) First-principles calculations of the phase stability of TiO2. Phys Rev B 65: 224112-1–224112-16Google Scholar
  79. 79.
    Stull DR, Prophet H (1971) JANAF thermochemical tables. NBS STP No 37, Washington DC, p 1141Google Scholar
  80. 80.
    Navrotsky A, Kleppa OJ (1967) Enthalpy of the anatase–rutile transformation. J Am Ceram Soc 50: 626CrossRefGoogle Scholar
  81. 81.
    Akhtar MK, Pratsinis SE, Mastrangelo SVR (1992) Dopants in vapor-phase synthesis of titania powders. J Am Ceram Soc 75: 3408–3416CrossRefGoogle Scholar
  82. 82.
    Chen CH, Kelder EM, Schoonman J (1999) Electrostatic sol–spray deposition (ESSD) and characterisation of nanostructured TiO2 thin films. Thin Solid Films 342: 35–41CrossRefGoogle Scholar
  83. 83.
    Okada K, Yamamoto N, Kameshima Y, Yasumori A (2001) Effect of silica additive on the anatse to rutile phase transition. J Am Ceram Soc 84: 1591–1596CrossRefGoogle Scholar
  84. 84.
    Reidy DJ, Holmes JD, Morris MA (2006) Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia and silica dopants. Ceram Int 32: 235–239CrossRefGoogle Scholar
  85. 85.
    Zhang YH, Reller A (2002) Phase transformation and grain growth of doped nanosized titania. Mater Sci Eng C 19: 323–326CrossRefGoogle Scholar
  86. 86.
    Yang J, Ferreira JMF (1998) Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase–rutile phase transformation. Mater Lett 36: 320–324CrossRefGoogle Scholar
  87. 87.
    Vargas S, Arroyo R, Haro E, Rodriguez R (1999) Effect of cationic dopants on the phase transition temperature of titania prepared by the sol–gel method. J Mater Res 14: 3932–3937CrossRefGoogle Scholar
  88. 88.
    Janes R, Knightley LJ, Harding CJ (2004) Structural and spectroscopic studeis of iron (iii) doped titania powders. Dyes Pigments 62: 199–212CrossRefGoogle Scholar
  89. 89.
    Iida Y, Ozaki S (1961) Grain growth and phase transformation of titanium oxide during calcination. J Am Ceram Soc 44: 120–127CrossRefGoogle Scholar
  90. 90.
    MacKenzie KJD (1975) Calcination of titania IV. Effect of additives on the anatase–rutile transformation. Transac J Br Ceram Soc 74: 29–34Google Scholar
  91. 91.
    Wang ZL, Yin JS, Mo WD, Zhangs ZJ (1997) In-situ analysis of valence conversion in transition metal oxides using electron energy-loss spectroscopy. J Phys Chem B 101: 6793–6798CrossRefGoogle Scholar
  92. 92.
    Heald EF, Weiss CW (1972) Kinetics and mechanism of the anatase/rutile transformation as catalyzed by ferric oxide and reducing conditions. Am Mineral 57: 10–23Google Scholar
  93. 93.
    Gennari FC, Pasquevich DM (1998) Kinetics of the anatase rutile transformation in TiO2 in the presence of Fe2O3. J Mater Sci 33: 1571–1578CrossRefGoogle Scholar
  94. 94.
    Takahashi Y, Matsuoka Y (1988) Dip-coating of TiO2 films using a sol derived from Ti (O–i–Pr) 4-diethanolamine-H2 O–i–PrOH system. J Mater Sci 23: 2259–2266CrossRefGoogle Scholar
  95. 95.
    Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14: 3808–3816CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dorian A. H. Hanaor
    • 1
    Email author
  • Mohammed H. N. Assadi
    • 1
  • Sean Li
    • 1
  • Aibing Yu
    • 1
  • Charles C. Sorrell
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations