Advertisement

Computational Mechanics

, Volume 51, Issue 1, pp 83–92 | Cite as

A model reduction technique based on the PGD for elastic-viscoplastic computational analysis

  • N. Relun
  • D. Néron
  • P. A. Boucard
Original Paper

Abstract

In this paper a model reduction approach for elastic-viscoplastic evolution problems is considered. Enhancement of the PGD reduced model by a new iterative technique involving only elastic problems is investigated and allows to reduce CPU cost. The accuracy of the solution and convergence properties are tested on an academic example and a calculation time comparison with the commercial finite element code Abaqus is presented in the case of an industrial structure.

Keywords

PGD LATIN method Elastic-viscoplastic Model reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: Transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144: 98–121zbMATHCrossRefGoogle Scholar
  2. 2.
    Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math 339(9): 667–672MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bergmann M, Cordier L (2008) Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J Comput Phys 227(16): 7813–7840MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Carlberg K, Bou-Mosleh C, Farhat C (2011) Efficient non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations. Int J Numer Methods Eng 86(2): 155–181MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5): 2737–2764MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9): 1114–1132MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4): 395–404CrossRefGoogle Scholar
  8. 8.
    Cognard JY, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9(2): 141–157zbMATHCrossRefGoogle Scholar
  9. 9.
    Cognard JY, Ladevèze P, Talbot P (1999) A large time increment approach for thermo-mechanical problems. Adv Eng Softw 30(9–11): 583–593CrossRefGoogle Scholar
  10. 10.
    González D, Ammar A, Chinesta F, Cueto E (2010) Recent advances on the use of separated representations. Int J Numer Methods Eng 81(5): 637–659zbMATHGoogle Scholar
  11. 11.
    Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196(4-6): 1030–1047MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Heyberger C, Boucard PA, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49: 277–289zbMATHCrossRefGoogle Scholar
  13. 13.
    Kunisch K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary hjb equation. Comput Math Appl 49(7–8): 1113–1126MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ladevèze P (1985) New algorithms: mechanical framework and development (in french). Compte rendu de l’académie des Sci 300(2): 41–44zbMATHGoogle Scholar
  15. 15.
    Ladevèze P (1999) Nonlinear computationnal structural mechanics—new approaches and non-incremental methods of calculation. Springer, BerlinGoogle Scholar
  16. 16.
    Ladevèze P, Passieux JC, Néron D (2010) The LATIN multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199: 1287–1296zbMATHCrossRefGoogle Scholar
  17. 17.
    Leygue A, Verron E (2010) A first step towards the use of proper general decomposition method for structural optimization. Arch Comput Methods Eng 17(4): 465–472MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lieu T, Farhat C, Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43): 5730–5742zbMATHCrossRefGoogle Scholar
  19. 19.
    Miyamura T, Noguchi H, Shioya R, Yoshimura S, Yagawa G (2002) Elastic–plastic analysis of nuclear structures with millions of dofs using the hierarchical domain decomposition method. Nucl Eng Des 212(1–3): 335–355CrossRefGoogle Scholar
  20. 20.
    Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17: 351–372MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nguyen NC, Peraire J (2008) An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. Int J Numer Methods Eng 76(1): 27–55MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23-24): 1603–1626MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nouy A, Ladevèze P (2004) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192: 3061–3087Google Scholar
  24. 24.
    Nouy A, Maître OPL (2009) Generalized spectral decomposition for stochastic nonlinear problems. J Comput Phys 228(1): 202–235MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Relun N, Néron D, Boucard PA (2012) Multiscale elastic-viscoplastic computational analysis: a detailed example. Eur J Comput Mech 20(7–8): 379–409Google Scholar
  26. 26.
    Sarbandi B, Cartel S, Besson J, Ryckelynck D (2010) Truncated integration for simultaneous simulation of sintering using a separated representation. Arch Comput Methods Eng, pp 1–9Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.LMT-Cachan, ENS Cachan / CNRS / UPMC / PRES UniverSud ParisCachan CedexFrance

Personalised recommendations