Computational Mechanics

, Volume 51, Issue 1, pp 35–45

Parametric finite elements, exact sequences and perfectly matched layers

Open Access
Original Paper


The paper establishes a relation between exact sequences, parametric finite elements, and perfectly matched layer (PML) techniques. We illuminate the analogy between the Piola-like maps used to define parametric H1-, H(curl)-, H(div)-, and L2-conforming elements, and the corresponding PML complex coordinates stretching for the same energy spaces. We deliver a method for obtaining PML-stretched bilinear forms (constituting the new weak formulation for the original problem with PML absorbing boundary layers) directly from their classical counterparts.


Exact sequence Perfectly matched layer Parametric element 


  1. 1.
    Bérenger JP (1994) A perfectly matched layer for the absorption of electromagnetic-waves. J Comput Phys 114(2): 185–200MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chew WC, Weedon WH (1994) A 3D perfectly matched medium from modified maxwells equations with stretched coordinates. Microw Opt Technol Lett 7(13): 599–604CrossRefGoogle Scholar
  3. 3.
    Chew WC, Jin JM, Michielssen E (1997) Complex coordinate system as a generalized absorbing boundary condition. In: IEEE antennas and propagation society international symposium 1997, vol 1–4, pp. 2060–2063. IEEE Antennas & Propagat Soc; Natl Res Council Canada; Canadian Natl Comm URSI; US Natl Comm URSI, IEEE, 345 E 47TH ST, New York, NY 10017Google Scholar
  4. 4.
    Collino F, Monk P (1998) The perfectly matched layer in curvilinear coordinates. SIAM J Sci Comput 19(6): 2061–2090MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Liu QH, Tao JP (1997) The perfectly matched layer for acoustic waves in absorptive media. J Acoust Soc Am 102(4): 2072–2082CrossRefGoogle Scholar
  6. 6.
    Chew WC, Liu QH (1996) Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J Comput Acoust 4: 341–359CrossRefGoogle Scholar
  7. 7.
    Zeng YQ, He JQ, Liu QH (2001) The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics 66(4): 1258–1266CrossRefGoogle Scholar
  8. 8.
    Sacks Z, Kingsland D, Lee R, Lee J (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43(12): 1460–1463CrossRefGoogle Scholar
  9. 9.
    Becache E, Fauqueux S, Joly P (2003) Stability of perfectly matched layers group velocities and anisotropic waves. J Comput Phys 188(2): 399–433. doi:10.1016/S0021-9991(03)00184-0 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Teixeira FL, Chew WC (1997) Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microw Guided Wave Lett 7(11): 371–373. doi:10.1109/75.641424 CrossRefGoogle Scholar
  11. 11.
    Teixeira F, Chew W (1998) Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves. Microw Opt Technol Lett 17(4): 231–236CrossRefGoogle Scholar
  12. 12.
    Teixeira F, Chew W (1998) General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microw Guided Wave Lett 8(6): 223–225CrossRefGoogle Scholar
  13. 13.
    Zheng Y, Huang X (2002) Anisotropic perfectly matched layers for elastic waves in Cartesian and curvilinear coordinates. Earth resources laboratory 2002 industry consortium meeting. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USAGoogle Scholar
  14. 14.
    Festa G, Vilotte J (2005) The newmark scheme as velocity-stress time-staggering: an efficient pml implementation for spectral element simulations of elastodynamics. Geophys J Int 161(3): 789–812. doi:10.1111/j.1365-246X.2005.02601.x CrossRefGoogle Scholar
  15. 15.
    Teixeira F, Chew W (2000) Complex space approach to perfectly matched layers: a review and some new developments. Int J Numer Model Electron Netw Devices Fields 13(5): 441–455MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Demkowicz L (2006) Computing with hp-adaptive finite elements. I. One- and two-dimensional elliptic and Maxwell problems. CRC Press, Taylor and FrancisCrossRefGoogle Scholar
  17. 17.
    Demkowicz L, Kurtz J, Pardo D, Paszyński M, Rachowicz W, Zdunek A (2007) Computing with hp-adaptive finite elements. II. Frontiers: three-dimensional elliptic and Maxwell problems with applications. CRC Press, Taylor and FrancisGoogle Scholar
  18. 18.
    Demkowicz L (2007) Polynomial exact sequences and projection based interpolation with application to Maxwell equations. In: Boffi D, Gastaldi L (eds) Mixed finite elements, compatibility conditions and applications. Lecture Notes in Mathematics, vol 1939. Springer, Berlin, pp 101–156Google Scholar
  19. 19.
    Michler C, Demkowicz L, Kurtz J, Pardo D (2007) Improving the performance of perfectly matched layers by means of hp-adaptivity. Numer Methods partial Differ Equ 23(4): 832–858. doi:10.1002/num.20252 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Center for Petroleum and Geosystems EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Department of Applied Computer Science and ModelingAGH University of Science and TechnologyKrakówPoland
  3. 3.Institute for Computational Engineering and Sciences (ICES)The University of Texas at AustinAustinUSA

Personalised recommendations