Computational Mechanics

, Volume 49, Issue 5, pp 565–579 | Cite as

A comparison of staggered solution schemes for coupled particle–continuum systems modeled with the Arlequin method

  • S. Pfaller
  • G. Possart
  • P. Steinmann
  • M. Rahimi
  • F. Müller-Plathe
  • M. C. Böhm
Original Paper

Abstract

This contribution aims at a systematic investigation of staggered solution schemes for the computation of coupled domains having different resolutions in space, a problem frequently arising in multi-scale modeling of materials. To couple a standard finite element domain with a high resolution atomistic or coarse-grained, i.e. particle-based domain, a so-called bridging domain is considered. In this handshake region a total energy, which is the sum of the weighted energies of both domains, needs to be formulated. Interactions in the particle domain are modeled by potential functions, e.g. a harmonic potential in the simplest case or the Lennard-Jones potential to consider also anharmonic interactions between the particles. The main goal is to separate the computation of finite element and particle domains as much as possible, amongst others to calculate the different domains on several CPUs. In the present work, the governing equations of the coupling method are presented. The energy functions of continuum, particle domain and bridging domain are recapitulated and the coupling constraint is set up. For the sake of simplicity, these relations are reformulated for the case of a one dimensional system. On the one hand, this system is computed monolithically without any separation of domains. On the other hand, various staggered solution schemes are derived systematically. The relevant equations of each scheme are given in detail together with the sequent iteration steps. All staggered schemes are investigated qualitatively, e.g. by their convergence behavior, as well as quantitatively by comparing the staggered solutions with the monolithic solution.

Keywords

Atomistic–continuum coupling Multiscale modeling Bridging domain method Domain decomposition Lagrange multipliers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubertin P, Rethore J, de Borst R (2009) Energy conservation of atomistic/continuum coupling. Int J Numer Methods Eng 78: 1365–1386MATHCrossRefGoogle Scholar
  2. 2.
    Bauman PT, Ben Dhia H, Elkhodja N, Oden JT, Prudhomme S (2008) On the application of the Arlequin method to the coupling of particle and continuum models. Comput Mech 42: 511–530MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bauman PT, Oden JT, Prudhomme S (2009) Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms. Comput Methods Appl Mech Eng 198: 799–818MATHCrossRefGoogle Scholar
  4. 4.
    Belytschko T, Xiao SP (2003) Coupling methods for continuum model with molecular model. Int J Multiscale Comput Eng 1: 115–126CrossRefGoogle Scholar
  5. 5.
    Ben Dhia H (1998) Problèmes méchaniques multi-échelles: la méthode Arlequin. Comptes Rendus de l’Académie des Science, Series II b 326: 899–904MATHGoogle Scholar
  6. 6.
    Ben Dhia H, Rateau G (2001) Analyse mathématique de la méthode Arlequin mixte. Comptes Rendus de l’Académie des Science, Series I 332: 649–654MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62: 1442–1462MATHCrossRefGoogle Scholar
  8. 8.
    Ben Dhia H, Elkhodja N, Roux FX (2008) Multimodeling of multi-alterated structures in the Arlequin framework. Solution with a domain-decomposition solver. Eur J Comput Mech 17: 969–980MATHGoogle Scholar
  9. 9.
    Chamoin L, Oden JT, Prudhomme S (2008) A stochastic coupling method for atomic-to-continuum Monte-Carlo simulations. Comput Methods Appl Mech Eng 197: 3530–3546MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128: 114110CrossRefGoogle Scholar
  11. 11.
    Farhat C, Roux FX (1991) A method of Finite Element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32: 1205–1227MATHCrossRefGoogle Scholar
  12. 12.
    Guidault P-A, Belytschko T (2007) On the L 2 and H 1 couplings for an overlapping domain decomposition method using Lagrange multipliers. Int J Numer Methods Eng 70: 322–350MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Khare R, Mielke SL, Paci JT, Zhang S, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75: 075412CrossRefGoogle Scholar
  14. 14.
    Khare R, Mielke SL, Schatz GC, Belytschko T (2008) Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes. Comput Methods Appl Mech Eng 197: 3190–3202MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Rahimi M, Karimi-Varzaneh HA, Böhm MC, Müller-Plathe F, Pfaller S, Possart G, Steinmann P (2011) Nonperiodic stochastic boundary conditions for molecular dynamics simulations of materials embedded into a continuum mechanics domain. J Chem Phys 134: 154108CrossRefGoogle Scholar
  16. 16.
    Schmidt M (2006) Minimization toolbox “minFunc”, available as Matlab code at http://www.cs.ubc.ca/~schmidtm
  17. 17.
    Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solid. Philos Mag A 73(6): 1529–1563CrossRefGoogle Scholar
  18. 18.
    Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193: 1645–1669MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Xu M, Belytschko T (2008) Conservation properties of the bridging domain method for coupled molecular/continuum dynamics. Int J Numer Methods Eng 76: 278–294MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Zhang S, Khare R, Lu Q, Belytschko T (2007) A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids. Int J Numer Methods Eng 70: 913–933MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Pfaller
    • 1
  • G. Possart
    • 1
  • P. Steinmann
    • 1
  • M. Rahimi
    • 2
  • F. Müller-Plathe
    • 2
  • M. C. Böhm
    • 2
  1. 1.Department of Applied MechanicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Theoretical Physical ChemistryDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations