Computational Mechanics

, Volume 49, Issue 3, pp 277–289 | Cite as

Multiparametric analysis within the proper generalized decomposition framework

  • Christophe HeybergerEmail author
  • Pierre-Alain Boucard
  • David Néron
Review Article


Optimization campaigns, which are being launched more and more often, require the execution of many parametric studies which can make the approach very costly in terms of computation time. Here, in order to reduce these computation times, we undertake to develop a multiparametric strategy using the LATIN method along with Proper Generalized Decomposition. This approach is compared to other common strategies, especially those based on POD.


Proper generalized decomposition LATIN Multiparametric strategy Proper orthogonal decomposition Model reduction Separated representation Finite sum decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El-Sayed MEM, Hsiung C-K (1991) Optimum structural design with parallel finite element analysis. Comput Struct 40(6): 1469–1474zbMATHCrossRefGoogle Scholar
  2. 2.
    Umesha PK, Venuraju MT, Leimbach KR (2005) Optimal design of truss structures using parallel computing. Struct Multidiscip Optim 29: 286–297CrossRefGoogle Scholar
  3. 3.
    Theocaris PS, Stravroulakis GE (1998) Multilevel optimal design of composite structures including materials with negative poisson’s ratio. Struct Optim 15: 8–15CrossRefGoogle Scholar
  4. 4.
    Bendsoe MP (1995) Optimization of structural topology, shape and material. Springer, HeidelbergGoogle Scholar
  5. 5.
    Borbaru F, Mukherjee S (2001) Shape sensitivity analysis and shape optimization in planar elasticity using the element-free galerkin method. Comput Method Appl Mech Eng 190: 4319–4337CrossRefGoogle Scholar
  6. 6.
    Li W, Li Q, Steven GP, Xie YM (2003) An evolutionary approach to elastic contact optimization of frame structure. Finite Elem Anal Design 40: 61–81CrossRefGoogle Scholar
  7. 7.
    Li W, Li Q, Steven GP, Xie YM (2005) An evolutionary shape optimization for elastic contact problems subject to multiple load cases. Comput Method Appl Mech Eng 194: 3394–3415zbMATHCrossRefGoogle Scholar
  8. 8.
    Pàczelt I, Mròz Z (2007) Optimal shapes of contact interfaces due to the sliding wear in the steady motion. Int J Solids Struct 44: 895–925zbMATHCrossRefGoogle Scholar
  9. 9.
    Barthelemy J, Haftka R (1993) Approximation concepts for optimum structural design. Struct Multidiscip Optim 5(3): 129–144Google Scholar
  10. 10.
    Booker A, Dennis J, Frank P, Serafini D, Torczon V, Trosset M (1993) A rigorous framework for optimization of expensive functions by surrogates. Struct Multidiscip Optim 17(1): 1–13Google Scholar
  11. 11.
    Queipo N, Haftka R, Shyy W, Goel T, Vaidyanathan R, Tucker P (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1): 1–28CrossRefGoogle Scholar
  12. 12.
    Barton R, Meckesheimer M (2006) Metamodel-based simulation optimization. In: Handbooks in operations research and management science, vol 13. Elsevier, New York, pp 535–574Google Scholar
  13. 13.
    Lumley JL (1967) Atmospheric turbulence and wave propagation. In: Yaglmo AM, Tatarski VI (eds) The structure of inhomogeneous turbulence. Nauka, Moscow, pp 166–178Google Scholar
  14. 14.
    Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7): 808–817Google Scholar
  15. 15.
    Maday Y, Ronquist EM (2004) The reduced-basis element method : application to a thermal fin problem. J Sci Comput 26(1): 240–258MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kunish K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary hjb equation. Comput Math Appl 49(7–8): 1113–1126MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Method Appl Mech Eng 195(41-43): 5730–5742zbMATHCrossRefGoogle Scholar
  18. 18.
    Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Method Appl Mech Eng 196(4–6): 1030–1047MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202: 346–366zbMATHCrossRefGoogle Scholar
  20. 20.
    Ryckelynck D, Chinesta F, Cueto E, Ammar A. (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1): 91–128MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ladevèze P (1999) Nonlinear computational structural mechanics—new approaches and non-incremental methods of calculation. Springer Verlag, New YorkzbMATHGoogle Scholar
  22. 22.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139(3): 153–176zbMATHCrossRefGoogle Scholar
  23. 23.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids : Part ii: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2-3): 98–121zbMATHCrossRefGoogle Scholar
  24. 24.
    Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput Method Appl Mech Eng 197: 400–413MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Method Appl Mech Eng 196(45–48): 4521–4537MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3): 251–285MathSciNetCrossRefGoogle Scholar
  27. 27.
    Neron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time-space interface coupling. Int J Numer Method Eng 75(9): 1053–1084MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ladevèze P, Passieux J-C, Neron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Method Appl Mech Eng 199(21–22): 1287–1296zbMATHCrossRefGoogle Scholar
  29. 29.
    Boucard P-A, Ladevèze P (1999) A multiple solution method for non-linear structural mechanics. Mech Eng 50(5): 317–328Google Scholar
  30. 30.
    Boucard P-A, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Numer Method Eng 57: 1259–1282zbMATHCrossRefGoogle Scholar
  31. 31.
    Ladevèze P (1989) The large time increment method for the analyse of structures with nonlinear constitutive relation described by internal variables. Comptes Rendus Acad Sci Paris 309(II): 1095–1099zbMATHGoogle Scholar
  32. 32.
    Bussy P, Boisse P, Ladevèze P (1990) A new approach in non-linear mechanics: the large time increment method. Int J Numer Method Eng 29: 647–663zbMATHCrossRefGoogle Scholar
  33. 33.
    Allix O, Vidal P (2002) A new multi-solution approach suitable for structural identification problems. Comput Method Appl Mech Eng 191(25–26): 2727–2758MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christophe Heyberger
    • 1
    Email author
  • Pierre-Alain Boucard
    • 1
  • David Néron
    • 1
  1. 1.LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris)Cachan CedexFrance

Personalised recommendations