Computational Mechanics

, Volume 49, Issue 1, pp 53–71 | Cite as

Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

Original Paper

Abstract

The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated.

Keywords

Constitutive modelling Inelastic and finite deformation Inverse methods Numerical algorithms 

List of symbols

Variables

a

Acceleration

b

Specific body force

[Bk]

Matrix to evaluate the gradient at the integration point of element k

\({\fancyscript{B}_0,\fancyscript{B}_t}\)

Body in the reference and current placement

da0, da

Element of area in the reference and current placement

dm0, dm

Element of mass in the reference and current placement

dv0, dv

Element of volume in the reference and current placement

E

Young’s modulus

E = lnV

Spatial logarithmic strain tensor

\({{\mathbf{E}^p}^{\bullet}}\)

Plastic strain rate

\({\Delta \mathbf{E}_k^p}\)

Plastic strain increment at element k

F

Total traction force in the test

F

Deformation gradient

\({\delta\mathbf{F}^{\bullet}}\)

Virtual velocity gradient

f

Resultant of the external forces

δD

Virtual rate of deformation tensor

I

Unit tensor

\({\widehat{\mathbf{N}}_{P\,\,k}^{\,\,\,\,\,\,(t)}=\{ \widehat{n}_{ij}^P \}}\)

Normalised tensor of the plastic flow

\({\widehat{\mathbf{N}}_{S\,\,k}^{\,\,\,\,\,(t)}=\{ \widehat{n}_{ij}^S \}}\)

Normalised tensor of the deviatoric stress

n0, n

Normal vector in the reference and current placement

p

Equivalent cumulated plastic strain

R

Rotation tensor

R

Lankford parameter

t

Surface load

S = {sij}

Deviatoric part of the Cauchy stress tensor

T = {σij}

Cauchy stress tensor

T1PK

1st Piola-Kirchhoff stress tensor

U, V

Right and left stretch tensors

u

Displacement vector

\({[\mathbf{u}_k^N ]}\)

Matrix of the nodal displacement at element k

δv

Virtual velocity vector

\({[ \delta \mathbf{v}_k^N ]}\)

Matrix of the nodal virtual velocity at element k

x0, x

Position vector in the reference and current placement

ν

Poisson’s ratio

ξ = {Xi}

Constitutive parameters vector

σT

Equivalent stress

σY

Yield stress

Φp

Yield function

χ

Motion function

Numbering

k

Index referring to the element

Ncp

Number of constitutive parameters

NE

Number of elements

Nt

Number of time steps

t

Index referring the time step

Operators

·

Inner or scalar product

| |

Modulus of a tensor or absolute value of a scalar

Grad, grad

Material and spatial gradient operator

Generic notations

scalars

Italic letters like A, B, a, b, α, β

vectors

Small letters in bold like a, b, α, β

tensors

Large Latin letters in bold like A, B, …

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertram A (2008) Elasticity and plasticity of large deofrmations, an introduction. Springer-Verlag, BerlinGoogle Scholar
  2. 2.
    Hill R (1952) On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solids 1(1): 19–30CrossRefMathSciNetGoogle Scholar
  3. 3.
    Nichols FA (1980) Plastic instabilities and uniaxial tensile ductilities. Acta Metall 28: 663–673CrossRefGoogle Scholar
  4. 4.
    Tvergaard N (1993) Necking in tensile bars with rectangular cross-section. Comp Meth Appl Mech Eng 103: 273–290CrossRefGoogle Scholar
  5. 5.
    Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plasticity 22: 1171–1194CrossRefMATHGoogle Scholar
  6. 6.
    Plunkett B, Lebenson RA, Cazacu O, Barlat F (2006) Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater 54: 4159–4169CrossRefGoogle Scholar
  7. 7.
    Barlat F, Yoon JW, Cazacu O (2007) On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plasticity 23: 876–896CrossRefMATHGoogle Scholar
  8. 8.
    Barlat F, Lege D, Brem J (1991) A six-component yield function for anisotropic materials. Int J Plasticity 7(7): 693–712CrossRefGoogle Scholar
  9. 9.
    Karafillis AP, Boyce MC (1993) A general anisotropic yield criterion using bounds and a transformation weighting tensor. J Mech Phys Solids 41: 1859–1886CrossRefMATHGoogle Scholar
  10. 10.
    Darrieulat M, Piot D (1996) A method of generating analytical yield surfaces of crystalline materials. Int J Plasticity 12: 575–610CrossRefMATHGoogle Scholar
  11. 11.
    Feigenbaum HP, Dafalias YF (2007) Directional distortional hardening in metal plasticity within thermodynamics. Int J Solids Struct 44: 7526–7542CrossRefMATHGoogle Scholar
  12. 12.
    Voyiadjis GZ, Thiagarajan G, Petrakis E (1995) Constitutive modelling for granular media using an anisotropic distortional yield model. Acta Mech 110: 151–171CrossRefMATHGoogle Scholar
  13. 13.
    Vegter H, van den Boogaard AH (2006) A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. Int J Plasticity 22: 557–580CrossRefMATHGoogle Scholar
  14. 14.
    Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plasticity 24(6): 1071–1096CrossRefMATHGoogle Scholar
  15. 15.
    Hwang YM, Lin YK, Altan T (2007) Evaluation of tubular materials by a hydraulic bulge test. Int J Mach Tools Manuf 47: 343–351CrossRefGoogle Scholar
  16. 16.
    Hwang Y, Wang C (2009) Flow stress evaluation of zinc copper and carbon steel tubes by hydraulic bulge tests considering their anisotropy. J Mater Process Tech 209: 4423–4428CrossRefGoogle Scholar
  17. 17.
    Brunet M, Morestin F, Godereaux S (2001) Nonlinear kinematic hardening identification for anisotropic sheet metals with bending-unbending tests. J Eng Mater Technol 123: 378–383CrossRefGoogle Scholar
  18. 18.
    Laws V (1981) Derivation of the tensile stress–strain curve from bending data. J Mater Sci 16: 1299–1304CrossRefGoogle Scholar
  19. 19.
    Losilla G, Tourabi A (2004) Hardening of a rolled sheet submitted to radial and complex biaxial tensile loadings. Int J Plasticity 20: 1789–1816CrossRefMATHGoogle Scholar
  20. 20.
    Mohr D, Oswald M (2008) A new experimental technique for the multi-axial testing of advanced high strength steel sheets. Exp Mech 48(1): 65–77CrossRefGoogle Scholar
  21. 21.
    Wierzbicki T, Bao Y, Lee Y, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47(4–5): 719–743CrossRefGoogle Scholar
  22. 22.
    Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne C (2007) Elasto-plastic material parameter identification by inverse methods: calculation of the sensitivity matrix. Int J Solids Struct 44: 4329–4341CrossRefMATHGoogle Scholar
  23. 23.
    Kajberg J, Lindkvist G (2004) Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41: 3439–3459CrossRefMATHGoogle Scholar
  24. 24.
    Mahnken R, Stein E (1994) The identification of parameters for visco-plastic models via finite-element methods and gradient methods. Model Simul Mater Sci Eng 2: 597–616CrossRefGoogle Scholar
  25. 25.
    Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. J Mater Process Tech 75: 204–211CrossRefGoogle Scholar
  26. 26.
    Tao H, Zhang N, Tong W (2009) An iterative procedure for determining effective stress–strain curves of sheet metals. Int J Mech Mater Des 5: 13–27CrossRefGoogle Scholar
  27. 27.
    Ling Y (1996) Uniaxial true stress-strain after necking. AMP J Tech 5: 37–48Google Scholar
  28. 28.
    Zhang KS, Li ZH (1994) Numerical analysis of the stress–strain curve and fracture initiation for ductile material. Eng Fract Mech 49: 235–241CrossRefGoogle Scholar
  29. 29.
    Rossi M, Broggiato GB, Papalini S (2008) Application of digital image correlation to the study of planar anisotropy of sheet metals at large strains. Meccanica 43(2): 185–199CrossRefMATHGoogle Scholar
  30. 30.
    Latourte F, Chrysochoos A, Pagano S, Wattrisse B (2008) Elastoplastic behavior identification for heterogeneous loadings and materials. Exp Mech 48: 435–449CrossRefGoogle Scholar
  31. 31.
    Romano AJ, Shirron JJ, Bucaro JA (1998) On the noninvasive determination of material parameters from a knowledge of elastic displacements: theory and numerical simulation. IEEE Trans Ultra Ferr 45: 751–759CrossRefGoogle Scholar
  32. 32.
    Romano AJ, Bucaro JA, Ehman RL, Shirron JJ (2000) Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements. IEEE Trans Ultra Ferr 47: 1575– 1581CrossRefGoogle Scholar
  33. 33.
    Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48: 381– 402CrossRefGoogle Scholar
  34. 34.
    Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42: 233–253CrossRefGoogle Scholar
  35. 35.
    Grédiac M, Pierron F (2006) Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int J Plasticity 22: 602–627CrossRefMATHGoogle Scholar
  36. 36.
    Avril S, Pierron F, Pannier Y, Rotinat R (2008) Stress reconstruction and constitutive parameter identification in plane-stress elasto-plastic problems using surface measurements of deformation fields. Exp Mech 48: 403–419CrossRefGoogle Scholar
  37. 37.
    Pierron F, Avril S, The Tran V (2010) Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening. Int J Solids Struct 47: 2993–3010CrossRefMATHGoogle Scholar
  38. 38.
    Pierron F, Sutton MA, Tiwari V (2011) Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp Mech. 51: 537–563CrossRefGoogle Scholar
  39. 39.
    Avril S, Pierron F, Sutton M, Yan J (2008) Identification of elasto-visco-plastic parameters and characterization of lüders behavior using digital image correlation and the virtual fields method. Mech Mater 40: 729–742CrossRefGoogle Scholar
  40. 40.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp Mech 39: 217–226CrossRefGoogle Scholar
  41. 41.
    Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42: 272–278CrossRefGoogle Scholar
  42. 42.
    Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37: 1313–1320CrossRefGoogle Scholar
  43. 43.
    Gates M, Lambros J, Heath MT (2011) Towards high performance digital volume correlation. Exp Mech. 51: 491–507CrossRefGoogle Scholar
  44. 44.
    Franck C, Hong S, Maskarinec S, Tirrel D, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 43: 207–218Google Scholar
  45. 45.
    Germaneau A, Doumalin P, Dupré J (2007) 3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks. Strain 43: 207–218CrossRefGoogle Scholar
  46. 46.
    Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A-Appl S 39: 1235–1265CrossRefGoogle Scholar
  47. 47.
    Rossi M, Chiappini G, Sasso M (2010) Characterization of aluminum alloys using a 3D full field measurement. In: 2010 SEM Annual Concerence & Exposition on Experimental & Applied MechanicsGoogle Scholar
  48. 48.
    Atay S, Kroenke C, Sabet A, Bayly P (2008) Measurement of the dynamic shear modulus of mouse brain tissue in-vivo by magnetic resonance elastography. J Biomech Eng 130: 021013CrossRefGoogle Scholar
  49. 49.
    Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc Roy Soc Lond Ser A, Math Phys Sci 193: 281–297CrossRefMATHGoogle Scholar
  50. 50.
    Lankford WT, Snyder SC, Bausher JA (1950) New criteria for predicting the press performance of deep drawing sheets. Trans Am Soc Metals 42: 1197–1232Google Scholar
  51. 51.
    Banabic D, Bunge HJ, Pöhlandt , Tekkaya A (2000) Formability of metallic materials. Springer, BerlinGoogle Scholar
  52. 52.
    Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44: 4978–5002CrossRefMATHGoogle Scholar
  53. 53.
    Guélon T, Toussaint E, Le Cam JB, Promma N, Grédiac M (2009) A new characterisation method for rubber. Polym Test 28: 715–723CrossRefGoogle Scholar
  54. 54.
    Dhondt G (2004) The finite element method for three-dimensional thermomechanical applications. John Wiley & Sons, New YorkCrossRefMATHGoogle Scholar
  55. 55.
    Zienkiewicz OC, Taylor R (2006) The finite element method. Butterworth-Heinemann, OxfordGoogle Scholar
  56. 56.
    Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual fields method to noisy data. Comput Mech 34(6): 439–452CrossRefMATHGoogle Scholar
  57. 57.
    Fletcher R (1987) Practical Methods of Optimization. John Wiley and Sons, New YorkMATHGoogle Scholar
  58. 58.
    Constrained Nonlinear Optimization Algorithm (2011) From http://www.mathworks.com/help/toolbox/optim
  59. 59.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36: 1627–1639CrossRefGoogle Scholar
  60. 60.
    Gorry A (1990) General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Anal Chem 62: 570–573CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.LMPF, Arts et Métiers ParisTechChâlons-en-ChampagneFrance

Personalised recommendations