Advertisement

Computational Mechanics

, 48:365 | Cite as

Towards multi-phase flow simulations in the PDE framework Peano

Complex geometries, thermohydraulics, and two-phase flow
  • Hans-Joachim Bungartz
  • Bernhard Gatzhammer
  • Michael Lieb
  • Miriam MehlEmail author
  • Tobias Neckel
Original Paper

Abstract

In this work, we present recent enhancements and new functionalities of our flow solver in the partial differential equation framework Peano. We start with an introduction including an overview of the Peano development and a short description of the basic concepts of Peano and the flow solver in Peano concerning the underlying structured but adaptive Cartesian grids, the data structure and data access optimisation, and spatial and time discretisation of the flow solver. The new features cover geometry interfaces and additional application functionalities. The two geometry interfaces, a triangulation-based description supported by the tool preCICE and a built-in geometry using geometry primitives such as cubes, spheres, or tetrahedra allow for the efficient treatment of complex and changing geometries, an essential ingredient for most application scenarios. The new application functionality concerns a coupled heat-flow problem and two-phase flows. We present numerical examples, performance and validation results for these new functionalities.

Keywords

PDE framework Octree-like Cartesian grids Computational fluid dynamics Thermohydraulics Two-phase flow 

References

  1. 1.
    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230(11): 4137–4152zbMATHCrossRefGoogle Scholar
  2. 2.
    Aoki T (1997) Interpolated differential operator (IDO) scheme for solving partial differential equations. Comput Phys Commun 102: 132–146CrossRefGoogle Scholar
  3. 3.
    Atanasov A, Bungartz H-J, Frisch J, Mehl M, Mundani R-P, Rank E, van Treek C (2010) Computational steering of complex flow simulations. In: Siegfried W, Arndt B, Gerhard W (eds) High performance computing in science and engineering, Garching 2009. Springer, Berlin (to appear)Google Scholar
  4. 4.
    Aulisa E, Manservisi S, Scardovelli R (2006) A novel representation of the surface tension force for two-phase flow with reduced spurious currents. Comput Methods Appl Mech Eng 195(44–47): 6239–6257zbMATHCrossRefGoogle Scholar
  5. 5.
    Badalassi VE, Ceniceros HD, Banerjee S (2003) Computation of multiphase systems with phase field models. J Comput Phys 190(2): 371–397MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L, Smith BF, Zhang H (2004) PETSc users manual. Technical Report ANL-95/11-Revision 2.1.5, Argonne National LaboratoryGoogle Scholar
  7. 7.
    Blanke C (2004) Kontinuitätserhaltende Finite-Element-Diskretisierung der Navier–Stokes–Gleichungen. Diploma Thesis, Technische Universität MünchenGoogle Scholar
  8. 8.
    Blum EK (1962) A modification of the Runge–Kutta fourth-order method. Math ComputGoogle Scholar
  9. 9.
    Brachet ME, Mininni PD, Rosenberg DL, Pouquet A (2008) High-order low-storage explicit Runge-Kutta schemes for equations with quadratic nonlinearities. Technical Report, CERN, August 2008 (arXiv:0808.1883)Google Scholar
  10. 10.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface-tension. J Comput Phys 100(2): 335–354MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Brázdová V, Bowler DR (2008) Automatic data distribution and load balancing with space-filling curves: implementation in conquest. J Phys Condens Matter 20Google Scholar
  12. 12.
    Brenk M, Bungartz H-J, Daubner K, Mehl M, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid-structure simulations on Cartesian grids. Comput Mech 43(1): 115–124zbMATHCrossRefGoogle Scholar
  13. 13.
    Brenk M, Bungartz H-J, Mehl M, Muntean IL, Neckel T, Weinzierl T (2008) Numerical simulation of particle transport in a drift ratchet. SIAM J Sci Comput 30(6): 2777–2798MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bungartz H-J, Gatzhammer B, Mehl M, Neckel T (2010) Partitioned simulation of fluid–structure interaction on cartesian grids. In: Bungartz H-J, Mehl M, Schäfer M (eds) Fluid–structure interaction—modelling, simulation, optimisation, part II. LNCSE. Springer, Berlin, pp 255–284Google Scholar
  15. 15.
    Bungartz H-J, Mehl M, Neckel T, Weinzierl T (2010) The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids. Comput Mech 46(1):103–114 (published online)Google Scholar
  16. 16.
    Caboussat A (2005) Numerical simulation of two-phase free surface flows. Arch Comput Methods Eng 12(2): 165–224MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ceniceros HD, Roma AM, Silveira-Neto A, Villar MM (2010) A robust, fully adaptive hybrid level-set/front-tracking method for two-phase flows with an accurate surface tension computation. Commun Comput Phys 8(1): 51–94MathSciNetGoogle Scholar
  18. 18.
    Dullien FAL (1992) Porous media: fluid transport and pore structure, 2nd edn. Academic Press, LondonGoogle Scholar
  19. 19.
    Eckhardt W, Weinzierl T (2010) A blocking strategy on multicore architectures for dynamically adaptive PDE solvers. In: Wyrzykowski R, Dongarra J, Karczewski K, Wasniewski J (eds) Parallel processing and applied mathematics, PPAM 2009. Lecture notes in computer science, vol 6068. Springer, Berlin, pp 567–575Google Scholar
  20. 20.
    Farthing MW, Kees CE, Akkerman I, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230(12): 4536–4558zbMATHCrossRefGoogle Scholar
  21. 21.
    Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Wiley, LondonzbMATHGoogle Scholar
  22. 22.
    Griebel M, Dornseifer Th, Neunhoeffer T (1998) Numerical simulation in fluid dynamics, a practical introduction. SIAMGoogle Scholar
  23. 23.
    Griebel M, Zumbusch G (1999) Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves. Parallel Comput 25(7): 827–843MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Günther F, Krahnke A, Langlotz M, Mehl M, Pögl M, Zenger Ch (2004) On the parallelization of a cache-optimal iterative solver for PDEs based on hierarchical data structures and space-filling curves. In: Proceedings of the recent advances in parallel virtual machine and message passing interface: 11th European PVM/MPI Users Group Meeting Budapest, Hungary, September 19–22, 2004. Lecture notes in computer science, vol 3241. Springer, HeidelbergGoogle Scholar
  25. 25.
    Günther F, Mehl M, Pögl M, Zenger C (2006) A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J Sci Comput 28(5): 1634–1650MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hungershöfer J, Wierum JM (2002) On the quality of partitions based on space-filling curves. In: ICCS’02: proceedings of the international conference on computational science—part III. Springer, pp 36–45Google Scholar
  27. 27.
    Imai Y, Aoki T, Takizawa K (2008) Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics. J Comput Phys 227: 2263–2285zbMATHGoogle Scholar
  28. 28.
    Jacqmin D (1999) Calculation of two-phase Navier–Stokes flows using phase-field modeling. J Comput Phys 155(1): 96–127MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Langlotz M, Mehl M, Weinzierl T, Zenger C (2005) Skvg: cache-optimal parallel solution of PDEs on high performance computers using space-trees and space-filling curves. In: Bode A, Durst F (eds) High performance computing in science and engineering, Garching 2004. Springer, Berlin, pp 71–82CrossRefGoogle Scholar
  30. 30.
    Lieb M (2008) A full multigrid implementation on staggered adaptive Cartesian grids for the pressure poisson equation in computational fluid dynamics. Master’s thesis, Institut für Informatik, Technische Universität MünchenGoogle Scholar
  31. 31.
    Lubachevsky BD, Stillinger F (1990) Geometric properties of random disk packings. J Stat Phys 60(5,6): 561–583MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Mehl M, Neckel T, Neumann P (2011) Navier–stokes and lattice–boltzmann on octree-like grids in the Peano framework. Int J Numer Methods Fluids 65(1):67–86. doi: 10.1002/fld.2469 (published online)Google Scholar
  33. 33.
    Mehl M, Weinzierl T, Zenger C (2006) A cache-oblivious self-adaptive full multigrid method. Numer Linear Algebra Appl 13(2–3): 275–291MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Meidner D, Vexler B (2007) Adaptive space–time finite element methods for parabolic optimization problems. SIAM J Control Optim 46(1): 116–142MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Muntean IL, Mehl M, Neckel T, Weinzierl T (2008) Concepts for efficient flow solvers based on adaptive cartesian grids. In: Wagner S, Steinmetz M, Bode A, Brehm M (eds) High performance computing in science and engineering, Garching 2007. Springer, BerlinGoogle Scholar
  36. 36.
    Neckel T (2009) The PDE framework Peano: an environment for efficient flow simulations. Verlag Dr. Hut, MunichGoogle Scholar
  37. 37.
    Neckel T, Mehl M, Bungartz H-J, Aoki T (2008) CFD simulations using an AMR-like approach in the PDE framework Peano. In: CFD2008. CFD22, December 2008Google Scholar
  38. 38.
    Neckel T, Mehl M, Zenger C (2010) Enhanced divergence-free elements for efficient incompressible flow simulations in the PDE framework Peano. In: Proceedings of the fifth European conference on computational fluid dynamics, ECCOMAS CFD 2010, 14–17 June 2010, LissabonGoogle Scholar
  39. 39.
    Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2): 463–502MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153(2): 509–534MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31: 567–603MathSciNetCrossRefGoogle Scholar
  42. 42.
    Scheidegger AE (1974) The physics of flow through porous media. University of Toronto Press, TorontoGoogle Scholar
  43. 43.
    Sethian JA, Smereka P (2003) Level set methods for fluid interfaces. Annu Rev Fluid Mech 35(1): 341–372MathSciNetCrossRefGoogle Scholar
  44. 44.
    Shin S, Abdel-Khalik SI, Daru V, Juric D (2005) Accurate representation of surface tension using the level contour reconstruction method. J Comput Phys 203(2): 493–516zbMATHCrossRefGoogle Scholar
  45. 45.
    Shin S, Juric D (2002) Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J Comput Phys 180(2): 427–470zbMATHCrossRefGoogle Scholar
  46. 46.
    Steensland J, Handra SC, Parashar M (2002) An application-centric characterization of domain-based SFC partitioners for parallel SAMR. IEEE Trans Parallel Distrib Syst 13(12): 1275–1289CrossRefGoogle Scholar
  47. 47.
    Sussman M, Fatemi E, Smereka P, Osher S (1997) An improved level set method for incompressible two-phase flows. Comput Fluids 27: 663–680CrossRefGoogle Scholar
  48. 48.
    Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible 2-phase flow. J Comput Phys 114(1): 146–159zbMATHCrossRefGoogle Scholar
  49. 49.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218zbMATHCrossRefGoogle Scholar
  50. 50.
    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Taubner W, Han J, Nas S, Jan YJ (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2): 708–759zbMATHCrossRefGoogle Scholar
  51. 51.
    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1): 25–37zbMATHCrossRefGoogle Scholar
  52. 52.
    Wand CM, Tay ZY (2010) Hydroelastic analysis and response of pontoon-type very large floating structures. In: Bungartz H-J, Mehl M, Schäfer M (eds) Fluid–structure interaction—modelling, simulation, optimisation, part II. LNCSE. Springer, Berlin, pp 103–130Google Scholar
  53. 53.
    Weinzierl T (2005) Eine cache-optimale Implementierung eines Navier–Stokes Lösers unter besonderer Berücksichtigung physikalischer Erhaltungssätze. Diploma Thesis, Institut für Informatik, Technische Universität MünchenGoogle Scholar
  54. 54.
    Weinzierl T (2009) A framework for parallel PDE solvers on multiscale adaptive Cartesian grids. Verlag Dr. Hut, MunichGoogle Scholar
  55. 55.
    Weinzierl T, Mehl M (2011) Peano—a traversal and storage scheme for octree-like adaptive cartesian multiscale grids. SIAM J Sci Comput (accepted)Google Scholar
  56. 56.
    Zumbusch GW (2003) Parallel multilevel methods advances in numerical mathematics. Teubner Verlag, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hans-Joachim Bungartz
    • 1
  • Bernhard Gatzhammer
    • 1
  • Michael Lieb
    • 1
  • Miriam Mehl
    • 1
    Email author
  • Tobias Neckel
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations