Advertisement

Computational Mechanics

, 48:377 | Cite as

A parallel sparse algorithm targeting arterial fluid mechanics computations

  • Murat Manguoglu
  • Kenji Takizawa
  • Ahmed H. Sameh
  • Tayfun E. Tezduyar
Original Paper

Abstract

Iterative solution of large sparse nonsymmetric linear equation systems is one of the numerical challenges in arterial fluid–structure interaction computations. This is because the fluid mechanics parts of the fluid + structure block of the equation system that needs to be solved at every nonlinear iteration of each time step corresponds to incompressible flow, the computational domains include slender parts, and accurate wall shear stress calculations require boundary layer mesh refinement near the arterial walls. We propose a hybrid parallel sparse algorithm, domain-decomposing parallel solver (DDPS), to address this challenge. As the test case, we use a fluid mechanics equation system generated by starting with an arterial shape and flow field coming from an FSI computation and performing two time steps of fluid mechanics computation with a prescribed arterial shape change, also coming from the FSI computation. We show how the DDPS algorithm performs in solving the equation system and demonstrate the scalability of the algorithm.

Keywords

Arterial fluid mechanics Incompressible flow Boundary layer mesh refinement Preconditioning techniques Nested iterative methods Parallel sparse algorithms 

References

  1. 1.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 (in Japanese)Google Scholar
  2. 2.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi: 10.1016/j.cma.2005.05.050 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi: 10.1007/s00466-006-0065-6 zbMATHCrossRefGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi: 10.1002/fld.1443 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi: 10.1016/j.compfluid.2005.07.014 zbMATHCrossRefGoogle Scholar
  7. 7.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm-dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi: 10.1002/fld.1497 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ β discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54: 593–608. doi: 10.1002/fld.1484 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi: 10.1002/fld.1633 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi: 10.1007/s00466-008-0325-8 zbMATHCrossRefGoogle Scholar
  11. 11.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178CrossRefGoogle Scholar
  13. 13.
    Maynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng 24: 367–417CrossRefGoogle Scholar
  14. 14.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi: 10.1016/j.cma.2008.05.024 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi: 10.1016/j.cma.2008.08.020 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bazilevs Y, Hsu M.-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi: 10.1002/cnm.1241 zbMATHCrossRefGoogle Scholar
  19. 19.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi: 10.1007/s00466-009-0423-2 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi: 10.1007/s00466-009-0425-0 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi: 10.1002/cnm.1289 MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi: 10.1007/s00466-009-0439-7 zbMATHCrossRefGoogle Scholar
  23. 23.
    Bazilevs Y, Hsu M.-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bazilevs Y, Hsu M.-C, Zhang Y, Wang Y, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498CrossRefGoogle Scholar
  25. 25.
    Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog Pediatr Cardiol 30: 81–89CrossRefGoogle Scholar
  26. 26.
    Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26: 73–85zbMATHCrossRefGoogle Scholar
  27. 27.
    Bevan RLT, Nithiarasu P, Loon RV, Sazanov RV, Luckraz H, Garnham A (2010) Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int J Numer Methods Fluids (published online). doi: 10.1002/fld.2313, March 2010
  28. 28.
    Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P (2010) “Non-Newtonian blood flow study in a model cavopulmonary vascular system”. Int J Numer Methods Fluids (published online). doi: 10.1002/fld.2256, March 2010
  29. 29.
    Cebral JR, Mut F, Sforza D, Lohner R, Scrivano E, Lylyk P, Putnam C (2010) Clinical application of image-based cfd for cerebral aneurysms. Int J Numer Methods Biomed Eng (published online) doi: 10.1002/cnm.1373, March 2010
  30. 30.
    Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi: 10.1002/fld.2360 zbMATHCrossRefGoogle Scholar
  31. 31.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi: 10.1002/fld.2448 zbMATHCrossRefGoogle Scholar
  32. 32.
    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng (published online) doi: 10.1002/cnm.1433, February 2011
  33. 33.
    Takizawa K, Brummer T, Tezduyar TE, Chen PR (2011) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech (2011) (to appear)Google Scholar
  34. 34.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi: 10.1109/2.237441 CrossRefGoogle Scholar
  36. 36.
    Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108: 99–118. doi: 10.1016/0045-7825(93)90155-Q MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi: 10.1016/0045-7825(94)00082-4 zbMATHCrossRefGoogle Scholar
  38. 38.
    Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi: 10.1016/0045-7825(94)90029-9 MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953. doi: 10.1002/fld.1650211011 zbMATHCrossRefGoogle Scholar
  40. 40.
    Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi: 10.1002/fld.1650211003 MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi: 10.1007/BF00350249 zbMATHCrossRefGoogle Scholar
  42. 42.
    Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C zbMATHCrossRefGoogle Scholar
  43. 43.
    Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi: 10.1007/s004660050393 zbMATHCrossRefGoogle Scholar
  44. 44.
    Behr M, Tezduyar T (1999) The Shear-Slip Mesh Update Method. Comput Methods Appl Mech Eng 174: 261–274. doi: 10.1016/S0045-7825(98)00299-0 zbMATHCrossRefGoogle Scholar
  45. 45.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi: 10.1016/S0045-7825(00)00204-8 zbMATHCrossRefGoogle Scholar
  46. 46.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386. doi: 10.1016/S0045-7825(00)00208-5 zbMATHCrossRefGoogle Scholar
  47. 47.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi: 10.1007/BF02897870 zbMATHCrossRefGoogle Scholar
  48. 48.
    Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput 191: 717–726. doi: 10.1016/S0045-7825(01)00311-5 zbMATHCrossRefGoogle Scholar
  49. 49.
    Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191: 673–687. doi: 10.1016/S0045-7825(01)00312-7 zbMATHCrossRefGoogle Scholar
  50. 50.
    Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural–acoustic and hydroelastic–sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019zbMATHCrossRefGoogle Scholar
  51. 51.
    Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi: 10.1115/1.1530635 zbMATHCrossRefGoogle Scholar
  52. 52.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods in Appl Mech Eng 193: 2019–2032. doi: 10.1016/j.cma.2003.12.046 zbMATHCrossRefGoogle Scholar
  53. 53.
    van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27: 599–621MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi: 10.1016/j.cma.2004.09.014 MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi: 10.1016/j.cma.2005.08.023 MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416zbMATHCrossRefGoogle Scholar
  57. 57.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi: 10.1016/j.compfluid.2005.02.011 MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Brenk M, Bungartz H.-J, Mehl M, Neckel T (2006) Fluid–structure interaction on Cartesian grids: flow simulation and coupling environment. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 233–269Google Scholar
  59. 59.
    Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 82–100Google Scholar
  60. 60.
    Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 336–355Google Scholar
  61. 61.
    Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146zbMATHCrossRefGoogle Scholar
  62. 62.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi: 10.1002/fld.1430 MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183. doi: 10.1007/s00466-006-0093-2 zbMATHCrossRefGoogle Scholar
  64. 64.
    Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019. doi: 10.1002/fld.1466 zbMATHCrossRefGoogle Scholar
  65. 65.
    Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54: 841–853. doi: 10.1002/fld.1473 MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi: 10.1007/s00466-008-0276-0 MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi: 10.1007/s00466-008-0261-7 zbMATHCrossRefGoogle Scholar
  68. 68.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi: 10.1007/s00466-008-0260-8 zbMATHCrossRefGoogle Scholar
  69. 69.
    Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi: 10.1007/s00466-008-0299-6 MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90zbMATHCrossRefGoogle Scholar
  71. 71.
    Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi: 10.1115/1.3059576 CrossRefGoogle Scholar
  72. 72.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi: 10.1007/s00466-009-0426-z zbMATHCrossRefGoogle Scholar
  73. 73.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Methods Fluids 64: 1201–1218. doi: 10.1002/fld.2221 zbMATHCrossRefGoogle Scholar
  74. 74.
    Bazilevs Y, Hsu M-C., Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi: 10.1002/fld.2400 zbMATHCrossRefGoogle Scholar
  75. 75.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253zbMATHCrossRefGoogle Scholar
  76. 76.
    Kiendl J, Bazilevs Y, Hsu M.-C., Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416CrossRefGoogle Scholar
  77. 77.
    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi: 10.1002/fld.2348 zbMATHCrossRefGoogle Scholar
  78. 78.
    Takizawa K, Wright S, Moorman S, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi: 10.1002/fld.2359 zbMATHCrossRefGoogle Scholar
  79. 79.
    Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refine- ment. Int J Numer Methods Fluids 65: 135–149. doi: 10.1002/fld.2415 MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech (published online). doi: 10.1007/s00466-011-0571-z, February 2011
  81. 81.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind—turbine rotor aerodynamics. Comput Mech (published online) doi:  10.1007/s00466-011-0589-2, March 2011
  82. 82.
    Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech (published online) doi: 10.1007/s00466-011-0590-9, April 2011
  83. 83.
    Takizawa K, Spielman T, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech (2011) (to appear)Google Scholar
  84. 84.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2011) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech (2011) (to appear)Google Scholar
  85. 85.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind–turbine rotor aerodynamics. Comput Mech (published online) doi: 10.1007/s00466-011-0614-5, July 2011
  86. 86.
    Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD-vol 34. ASME, New York, pp 19–35Google Scholar
  87. 87.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi: 10.1016/S0065-2156(08)70153-4 MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi: 10.1016/0045-7825(92)90141-6 zbMATHCrossRefGoogle Scholar
  90. 90.
    Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction—theory, numerics and applications. Kassel University Press, Kassel, pp 231–252, ISBN 978-3-89958-666-4Google Scholar
  91. 91.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi: 10.1016/0045-7825(92)90059-S MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi: 10.1016/0045-7825(92)90060-W MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi: 10.1002/fld.505 MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Sameh AH, Kuck DJ (1978) On stable parallel linear system solvers. J ACM 25: 81–91. doi: 10.1145/322047.322054 MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Chen DJKSC, Sameh AH (1978) Practical parallel band triangular system solvers. ACM Trans Math Softw 4: 270–277MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Lawrie DH, Sameh AH (1984) The computation and communication complexity of a parallel banded system solver. ACM Trans Math Softw 10: 185–195. doi: 10.1145/399.401 MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Berry MW, Sameh A (1988) Multiprocessor schemes for solving block tridiagonal linear systems. Int J Supercomput Appl 1: 37–57CrossRefGoogle Scholar
  98. 98.
    Dongarra JJ, Sameh AH (1984) On some parallel banded system solvers. Parallel Comput 1: 223–235CrossRefGoogle Scholar
  99. 99.
    Polizzi E, Sameh AH (2006) A parallel hybrid banded system solver: the spike algorithm. Parallel Comput 32: 177–194. doi: 10.1016/j.parco.2005.07.005 MathSciNetCrossRefGoogle Scholar
  100. 100.
    Polizzi E, Sameh AH (2007) Spike: a parallel environment for solving banded linear systems. Comput Fluids 36: 113–120MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Manguoglu M A domain decomposing parallel sparse linear system solver. J Comput Appl Math (in review)Google Scholar
  102. 102.
    Karypis G, Kumar V (1999) Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM J Sci Comput 41: 278–300MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Murat Manguoglu
    • 1
  • Kenji Takizawa
    • 2
  • Ahmed H. Sameh
    • 3
  • Tayfun E. Tezduyar
    • 4
  1. 1.Department of Computer EngineeringMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Modern Mechanical Engineering and Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  3. 3.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  4. 4.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations